Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itunisuc | Unicode version |
Description: Successor iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
ituni.u |
Ref | Expression |
---|---|
itunisuc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frsuc 7121 | . . . . . 6 | |
2 | fvex 5881 | . . . . . . 7 | |
3 | unieq 4257 | . . . . . . . 8 | |
4 | unieq 4257 | . . . . . . . . 9 | |
5 | 4 | cbvmptv 4543 | . . . . . . . 8 |
6 | 2 | uniex 6596 | . . . . . . . 8 |
7 | 3, 5, 6 | fvmpt 5956 | . . . . . . 7 |
8 | 2, 7 | ax-mp 5 | . . . . . 6 |
9 | 1, 8 | syl6eq 2514 | . . . . 5 |
10 | 9 | adantl 466 | . . . 4 |
11 | ituni.u | . . . . . . 7 | |
12 | 11 | itunifval 8817 | . . . . . 6 |
13 | 12 | fveq1d 5873 | . . . . 5 |
14 | 13 | adantr 465 | . . . 4 |
15 | 12 | fveq1d 5873 | . . . . . 6 |
16 | 15 | adantr 465 | . . . . 5 |
17 | 16 | unieqd 4259 | . . . 4 |
18 | 10, 14, 17 | 3eqtr4d 2508 | . . 3 |
19 | uni0 4276 | . . . . 5 | |
20 | 19 | eqcomi 2470 | . . . 4 |
21 | 11 | itunifn 8818 | . . . . . . . . . 10 |
22 | fndm 5685 | . . . . . . . . . 10 | |
23 | 21, 22 | syl 16 | . . . . . . . . 9 |
24 | 23 | eleq2d 2527 | . . . . . . . 8 |
25 | peano2b 6716 | . . . . . . . 8 | |
26 | 24, 25 | syl6bbr 263 | . . . . . . 7 |
27 | 26 | notbid 294 | . . . . . 6 |
28 | 27 | biimpar 485 | . . . . 5 |
29 | ndmfv 5895 | . . . . 5 | |
30 | 28, 29 | syl 16 | . . . 4 |
31 | 23 | eleq2d 2527 | . . . . . . . 8 |
32 | 31 | notbid 294 | . . . . . . 7 |
33 | 32 | biimpar 485 | . . . . . 6 |
34 | ndmfv 5895 | . . . . . 6 | |
35 | 33, 34 | syl 16 | . . . . 5 |
36 | 35 | unieqd 4259 | . . . 4 |
37 | 20, 30, 36 | 3eqtr4a 2524 | . . 3 |
38 | 18, 37 | pm2.61dan 791 | . 2 |
39 | 0fv 5904 | . . . . 5 | |
40 | 39 | unieqi 4258 | . . . 4 |
41 | 0fv 5904 | . . . 4 | |
42 | 19, 40, 41 | 3eqtr4ri 2497 | . . 3 |
43 | fvprc 5865 | . . . 4 | |
44 | 43 | fveq1d 5873 | . . 3 |
45 | 43 | fveq1d 5873 | . . . 4 |
46 | 45 | unieqd 4259 | . . 3 |
47 | 42, 44, 46 | 3eqtr4a 2524 | . 2 |
48 | 38, 47 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 /\ wa 369
= wceq 1395 e. wcel 1818 cvv 3109
c0 3784 U. cuni 4249 e. cmpt 4510
suc csuc 4885
dom cdm 5004 |` cres 5006 Fn wfn 5588
` cfv 5593 com 6700
rec crdg 7094 |
This theorem is referenced by: itunitc1 8821 itunitc 8822 ituniiun 8823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 |
Copyright terms: Public domain | W3C validator |