MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuncom Unicode version

Theorem iuncom 4337
Description: Commutation of indexed unions. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
iuncom
Distinct variable groups:   ,   ,   ,

Proof of Theorem iuncom
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 rexcom 3019 . . . 4
2 eliun 4335 . . . . 5
32rexbii 2959 . . . 4
4 eliun 4335 . . . . 5
54rexbii 2959 . . . 4
61, 3, 53bitr4i 277 . . 3
7 eliun 4335 . . 3
8 eliun 4335 . . 3
96, 7, 83bitr4i 277 . 2
109eqriv 2453 1
Colors of variables: wff setvar class
Syntax hints:  =wceq 1395  e.wcel 1818  E.wrex 2808  U_ciun 4330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-v 3111  df-iun 4332
  Copyright terms: Public domain W3C validator