MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuncom4 Unicode version

Theorem iuncom4 4338
Description: Commutation of union with indexed union. (Contributed by Mario Carneiro, 18-Jan-2014.)
Assertion
Ref Expression
iuncom4

Proof of Theorem iuncom4
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2813 . . . . . . 7
21rexbii 2959 . . . . . 6
3 rexcom4 3129 . . . . . 6
42, 3bitri 249 . . . . 5
5 r19.41v 3009 . . . . . 6
65exbii 1667 . . . . 5
74, 6bitri 249 . . . 4
8 eluni2 4253 . . . . 5
98rexbii 2959 . . . 4
10 df-rex 2813 . . . . 5
11 eliun 4335 . . . . . . 7
1211anbi1i 695 . . . . . 6
1312exbii 1667 . . . . 5
1410, 13bitri 249 . . . 4
157, 9, 143bitr4i 277 . . 3
16 eliun 4335 . . 3
17 eluni2 4253 . . 3
1815, 16, 173bitr4i 277 . 2
1918eqriv 2453 1
Colors of variables: wff setvar class
Syntax hints:  /\wa 369  =wceq 1395  E.wex 1612  e.wcel 1818  E.wrex 2808  U.cuni 4249  U_ciun 4330
This theorem is referenced by:  ituniiun  8823  tgidm  19482  txcmplem2  20143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-v 3111  df-uni 4250  df-iun 4332
  Copyright terms: Public domain W3C validator