Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunconst | Unicode version |
Description: Indexed union of a constant class, i.e. where does not depend on . (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iunconst |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.9rzv 3923 | . . 3 | |
2 | eliun 4335 | . . 3 | |
3 | 1, 2 | syl6rbbr 264 | . 2 |
4 | 3 | eqrdv 2454 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 =/= wne 2652 E. wrex 2808
c0 3784 U_ ciun 4330 |
This theorem is referenced by: iununi 4415 oe1m 7213 oarec 7230 oelim2 7263 mblfinlem2 30052 bnj1143 33849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-nul 3785 df-iun 4332 |
Copyright terms: Public domain | W3C validator |