Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iundomg | Unicode version |
Description: An upper bound for the
cardinality of an indexed union, with explicit
choice principles. depends on and should be thought of as
( x ) . (Contributed by
Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
iunfo.1 | |
iundomg.2 | |
iundomg.3 | |
iundomg.4 |
Ref | Expression |
---|---|
iundomg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunfo.1 | . . . . 5 | |
2 | iundomg.2 | . . . . 5 | |
3 | iundomg.3 | . . . . 5 | |
4 | 1, 2, 3 | iundom2g 8936 | . . . 4 |
5 | iundomg.4 | . . . 4 | |
6 | acndom2 8456 | . . . 4 | |
7 | 4, 5, 6 | sylc 60 | . . 3 |
8 | 1 | iunfo 8935 | . . 3 |
9 | fodomacn 8458 | . . 3 | |
10 | 7, 8, 9 | mpisyl 18 | . 2 |
11 | domtr 7588 | . 2 | |
12 | 10, 4, 11 | syl2anc 661 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 A. wral 2807 { csn 4029
U_ ciun 4330 class class class wbr 4452
X. cxp 5002 |` cres 5006 -onto-> wfo 5591 (class class class)co 6296
c2nd 6799
cmap 7439
cdom 7534 AC_ wacn 8340 |
This theorem is referenced by: iundom 8938 iunctb 8970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-map 7441 df-dom 7538 df-acn 8344 |
Copyright terms: Public domain | W3C validator |