MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuneq12df Unicode version

Theorem iuneq12df 4354
Description: Equality deduction for indexed union, deduction version. (Contributed by Thierry Arnoux, 31-Dec-2016.)
Hypotheses
Ref Expression
iuneq12df.1
iuneq12df.2
iuneq12df.3
iuneq12df.4
iuneq12df.5
Assertion
Ref Expression
iuneq12df

Proof of Theorem iuneq12df
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 iuneq12df.1 . . . 4
2 iuneq12df.2 . . . 4
3 iuneq12df.3 . . . 4
4 iuneq12df.4 . . . 4
5 iuneq12df.5 . . . . 5
65eleq2d 2527 . . . 4
71, 2, 3, 4, 6rexeqbid 3067 . . 3
87alrimiv 1719 . 2
9 abbi 2588 . . 3
10 df-iun 4332 . . . 4
11 df-iun 4332 . . . 4
1210, 11eqeq12i 2477 . . 3
139, 12bitr4i 252 . 2
148, 13sylib 196 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  A.wal 1393  =wceq 1395  F/wnf 1616  e.wcel 1818  {cab 2442  F/_wnfc 2605  E.wrex 2808  U_ciun 4330
This theorem is referenced by:  iundisjf  27448  measvuni  28185  iuneq2f  30563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rex 2813  df-iun 4332
  Copyright terms: Public domain W3C validator