Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq12df | Unicode version |
Description: Equality deduction for indexed union, deduction version. (Contributed by Thierry Arnoux, 31-Dec-2016.) |
Ref | Expression |
---|---|
iuneq12df.1 | |
iuneq12df.2 | |
iuneq12df.3 | |
iuneq12df.4 | |
iuneq12df.5 |
Ref | Expression |
---|---|
iuneq12df |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq12df.1 | . . . 4 | |
2 | iuneq12df.2 | . . . 4 | |
3 | iuneq12df.3 | . . . 4 | |
4 | iuneq12df.4 | . . . 4 | |
5 | iuneq12df.5 | . . . . 5 | |
6 | 5 | eleq2d 2527 | . . . 4 |
7 | 1, 2, 3, 4, 6 | rexeqbid 3067 | . . 3 |
8 | 7 | alrimiv 1719 | . 2 |
9 | abbi 2588 | . . 3 | |
10 | df-iun 4332 | . . . 4 | |
11 | df-iun 4332 | . . . 4 | |
12 | 10, 11 | eqeq12i 2477 | . . 3 |
13 | 9, 12 | bitr4i 252 | . 2 |
14 | 8, 13 | sylib 196 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 = wceq 1395 F/ wnf 1616
e. wcel 1818 { cab 2442 F/_ wnfc 2605
E. wrex 2808 U_ ciun 4330 |
This theorem is referenced by: iundisjf 27448 measvuni 28185 iuneq2f 30563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rex 2813 df-iun 4332 |
Copyright terms: Public domain | W3C validator |