Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq1d | Unicode version |
Description: Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) |
Ref | Expression |
---|---|
iuneq1d.1 |
Ref | Expression |
---|---|
iuneq1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1d.1 | . 2 | |
2 | iuneq1 4344 | . 2 | |
3 | 1, 2 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
U_ ciun 4330 |
This theorem is referenced by: iuneq12d 4356 disjxiun 4449 kmlem11 8561 prmreclem4 14437 imasval 14908 iundisj 21958 iundisj2 21959 voliunlem1 21960 iunmbl 21963 volsup 21966 uniioombllem4 21995 iuninc 27428 iundisjf 27448 iundisj2f 27449 iundisjfi 27601 iundisj2fi 27602 iundisjcnt 27603 indval2 28028 sigaclcu3 28122 meascnbl 28190 cvmliftlem10 28739 mrsubvrs 28882 msubvrs 28920 voliunnfl 30058 volsupnfl 30059 heiborlem3 30309 heibor 30317 bnj1113 33844 bnj155 33937 bnj570 33963 bnj893 33986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-in 3482 df-ss 3489 df-iun 4332 |
Copyright terms: Public domain | W3C validator |