Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunfi | Unicode version |
Description: The finite union of
finite sets is finite. Exercise 13 of [Enderton]
p. 144. This is the indexed union version of unifi 7829. Note that
depends on , i.e. can be thought of as
( x ) . (Contributed
by NM, 23-Mar-2006.) (Proof shortened by Mario Carneiro,
31-Aug-2015.) |
Ref | Expression |
---|---|
iunfi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 3054 | . . . 4 | |
2 | iuneq1 4344 | . . . . . 6 | |
3 | 0iun 4387 | . . . . . 6 | |
4 | 2, 3 | syl6eq 2514 | . . . . 5 |
5 | 4 | eleq1d 2526 | . . . 4 |
6 | 1, 5 | imbi12d 320 | . . 3 |
7 | raleq 3054 | . . . 4 | |
8 | iuneq1 4344 | . . . . 5 | |
9 | 8 | eleq1d 2526 | . . . 4 |
10 | 7, 9 | imbi12d 320 | . . 3 |
11 | raleq 3054 | . . . 4 | |
12 | iuneq1 4344 | . . . . 5 | |
13 | 12 | eleq1d 2526 | . . . 4 |
14 | 11, 13 | imbi12d 320 | . . 3 |
15 | raleq 3054 | . . . 4 | |
16 | iuneq1 4344 | . . . . 5 | |
17 | 16 | eleq1d 2526 | . . . 4 |
18 | 15, 17 | imbi12d 320 | . . 3 |
19 | 0fin 7767 | . . . 4 | |
20 | 19 | a1i 11 | . . 3 |
21 | ssun1 3666 | . . . . . . 7 | |
22 | ssralv 3563 | . . . . . . 7 | |
23 | 21, 22 | ax-mp 5 | . . . . . 6 |
24 | 23 | imim1i 58 | . . . . 5 |
25 | iunxun 4412 | . . . . . . 7 | |
26 | nfcv 2619 | . . . . . . . . . . 11 | |
27 | nfcsb1v 3450 | . . . . . . . . . . 11 | |
28 | csbeq1a 3443 | . . . . . . . . . . 11 | |
29 | 26, 27, 28 | cbviun 4367 | . . . . . . . . . 10 |
30 | vex 3112 | . . . . . . . . . . 11 | |
31 | csbeq1 3437 | . . . . . . . . . . 11 | |
32 | 30, 31 | iunxsn 4410 | . . . . . . . . . 10 |
33 | 29, 32 | eqtri 2486 | . . . . . . . . 9 |
34 | ssun2 3667 | . . . . . . . . . . 11 | |
35 | ssnid 4058 | . . . . . . . . . . 11 | |
36 | 34, 35 | sselii 3500 | . . . . . . . . . 10 |
37 | nfcsb1v 3450 | . . . . . . . . . . . 12 | |
38 | 37 | nfel1 2635 | . . . . . . . . . . 11 |
39 | csbeq1a 3443 | . . . . . . . . . . . 12 | |
40 | 39 | eleq1d 2526 | . . . . . . . . . . 11 |
41 | 38, 40 | rspc 3204 | . . . . . . . . . 10 |
42 | 36, 41 | ax-mp 5 | . . . . . . . . 9 |
43 | 33, 42 | syl5eqel 2549 | . . . . . . . 8 |
44 | unfi 7807 | . . . . . . . 8 | |
45 | 43, 44 | sylan2 474 | . . . . . . 7 |
46 | 25, 45 | syl5eqel 2549 | . . . . . 6 |
47 | 46 | expcom 435 | . . . . 5 |
48 | 24, 47 | sylcom 29 | . . . 4 |
49 | 48 | a1i 11 | . . 3 |
50 | 6, 10, 14, 18, 20, 49 | findcard2 7780 | . 2 |
51 | 50 | imp 429 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 A. wral 2807
[_ csb 3434 u. cun 3473 C_ wss 3475
c0 3784 { csn 4029 U_ ciun 4330
cfn 7536 |
This theorem is referenced by: unifi 7829 infssuni 7831 ixpfi 7837 ackbij1lem9 8629 ackbij1lem10 8630 fsuppmapnn0fiublem 12096 fsuppmapnn0fiub 12097 fsum2dlem 13585 fsumcom2 13589 fsumiun 13635 hashiun 13636 ackbijnn 13640 fprod2dlem 13784 fprodcom2 13788 ablfaclem3 17138 pmatcoe1fsupp 19202 locfincmp 20027 txcmplem2 20143 alexsubALTlem3 20549 aannenlem1 22724 fsumvma 23488 frghash2spot 25063 usgreghash2spotv 25066 fiphp3d 30753 hbt 31079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-fin 7540 |
Copyright terms: Public domain | W3C validator |