Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunfo | Unicode version |
Description: Existence of an onto function from a disjoint union to a union. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 18-Jan-2014.) |
Ref | Expression |
---|---|
iunfo.1 |
Ref | Expression |
---|---|
iunfo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo2nd 6821 | . . . 4 | |
2 | fof 5800 | . . . 4 | |
3 | ffn 5736 | . . . 4 | |
4 | 1, 2, 3 | mp2b 10 | . . 3 |
5 | ssv 3523 | . . 3 | |
6 | fnssres 5699 | . . 3 | |
7 | 4, 5, 6 | mp2an 672 | . 2 |
8 | df-ima 5017 | . . 3 | |
9 | iunfo.1 | . . . . . . . . . . 11 | |
10 | 9 | eleq2i 2535 | . . . . . . . . . 10 |
11 | eliun 4335 | . . . . . . . . . 10 | |
12 | 10, 11 | bitri 249 | . . . . . . . . 9 |
13 | xp2nd 6831 | . . . . . . . . . . 11 | |
14 | eleq1 2529 | . . . . . . . . . . 11 | |
15 | 13, 14 | syl5ib 219 | . . . . . . . . . 10 |
16 | 15 | reximdv 2931 | . . . . . . . . 9 |
17 | 12, 16 | syl5bi 217 | . . . . . . . 8 |
18 | 17 | impcom 430 | . . . . . . 7 |
19 | 18 | rexlimiva 2945 | . . . . . 6 |
20 | nfiu1 4360 | . . . . . . . . 9 | |
21 | 9, 20 | nfcxfr 2617 | . . . . . . . 8 |
22 | nfv 1707 | . . . . . . . 8 | |
23 | 21, 22 | nfrex 2920 | . . . . . . 7 |
24 | ssiun2 4373 | . . . . . . . . . . . 12 | |
25 | 24 | adantr 465 | . . . . . . . . . . 11 |
26 | simpr 461 | . . . . . . . . . . . 12 | |
27 | ssnid 4058 | . . . . . . . . . . . . 13 | |
28 | opelxp 5034 | . . . . . . . . . . . . 13 | |
29 | 27, 28 | mpbiran 918 | . . . . . . . . . . . 12 |
30 | 26, 29 | sylibr 212 | . . . . . . . . . . 11 |
31 | 25, 30 | sseldd 3504 | . . . . . . . . . 10 |
32 | 31, 9 | syl6eleqr 2556 | . . . . . . . . 9 |
33 | vex 3112 | . . . . . . . . . 10 | |
34 | vex 3112 | . . . . . . . . . 10 | |
35 | 33, 34 | op2nd 6809 | . . . . . . . . 9 |
36 | fveq2 5871 | . . . . . . . . . . 11 | |
37 | 36 | eqeq1d 2459 | . . . . . . . . . 10 |
38 | 37 | rspcev 3210 | . . . . . . . . 9 |
39 | 32, 35, 38 | sylancl 662 | . . . . . . . 8 |
40 | 39 | ex 434 | . . . . . . 7 |
41 | 23, 40 | rexlimi 2939 | . . . . . 6 |
42 | 19, 41 | impbii 188 | . . . . 5 |
43 | fvelimab 5929 | . . . . . 6 | |
44 | 4, 5, 43 | mp2an 672 | . . . . 5 |
45 | eliun 4335 | . . . . 5 | |
46 | 42, 44, 45 | 3bitr4i 277 | . . . 4 |
47 | 46 | eqriv 2453 | . . 3 |
48 | 8, 47 | eqtr3i 2488 | . 2 |
49 | df-fo 5599 | . 2 | |
50 | 7, 48, 49 | mpbir2an 920 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
= wceq 1395 e. wcel 1818 E. wrex 2808
cvv 3109
C_ wss 3475 { csn 4029 <. cop 4035
U_ ciun 4330 X. cxp 5002 ran crn 5005
|` cres 5006 " cima 5007 Fn wfn 5588
--> wf 5589 -onto-> wfo 5591 ` cfv 5593
c2nd 6799 |
This theorem is referenced by: iundomg 8937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fo 5599 df-fv 5601 df-2nd 6801 |
Copyright terms: Public domain | W3C validator |