MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuniin Unicode version

Theorem iuniin 4341
Description: Law combining indexed union with indexed intersection. Eq. 14 in [KuratowskiMostowski] p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iuniin
Distinct variable groups:   ,   ,   ,

Proof of Theorem iuniin
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 r19.12 2983 . . . 4
2 vex 3112 . . . . . 6
3 eliin 4336 . . . . . 6
42, 3ax-mp 5 . . . . 5
54rexbii 2959 . . . 4
6 eliun 4335 . . . . 5
76ralbii 2888 . . . 4
81, 5, 73imtr4i 266 . . 3
9 eliun 4335 . . 3
10 eliin 4336 . . . 4
112, 10ax-mp 5 . . 3
128, 9, 113imtr4i 266 . 2
1312ssriv 3507 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  e.wcel 1818  A.wral 2807  E.wrex 2808   cvv 3109  C_wss 3475  U_ciun 4330  |^|_ciin 4331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-v 3111  df-in 3482  df-ss 3489  df-iun 4332  df-iin 4333
  Copyright terms: Public domain W3C validator