MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunn0 Unicode version

Theorem iunn0 4390
Description: There is a nonempty class in an indexed collection (x) iff the indexed union of them is nonempty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iunn0
Distinct variable group:   ,

Proof of Theorem iunn0
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 rexcom4 3129 . . 3
2 eliun 4335 . . . 4
32exbii 1667 . . 3
41, 3bitr4i 252 . 2
5 n0 3794 . . 3
65rexbii 2959 . 2
7 n0 3794 . 2
84, 6, 73bitr4i 277 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  E.wex 1612  e.wcel 1818  =/=wne 2652  E.wrex 2808   c0 3784  U_ciun 4330
This theorem is referenced by:  fsuppmapnn0fiubex  12098  lbsextlem2  17805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-v 3111  df-dif 3478  df-nul 3785  df-iun 4332
  Copyright terms: Public domain W3C validator