Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunn0 | Unicode version |
Description: There is a nonempty class
in an indexed collection ( x ) iff the
indexed union of them is nonempty. (Contributed by NM, 15-Oct-2003.)
(Proof shortened by Andrew Salmon,
25-Jul-2011.) |
Ref | Expression |
---|---|
iunn0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4 3129 | . . 3 | |
2 | eliun 4335 | . . . 4 | |
3 | 2 | exbii 1667 | . . 3 |
4 | 1, 3 | bitr4i 252 | . 2 |
5 | n0 3794 | . . 3 | |
6 | 5 | rexbii 2959 | . 2 |
7 | n0 3794 | . 2 | |
8 | 4, 6, 7 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 E. wex 1612
e. wcel 1818 =/= wne 2652 E. wrex 2808
c0 3784 U_ ciun 4330 |
This theorem is referenced by: fsuppmapnn0fiubex 12098 lbsextlem2 17805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-nul 3785 df-iun 4332 |
Copyright terms: Public domain | W3C validator |