Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunpw | Unicode version |
Description: An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.) |
Ref | Expression |
---|---|
iunpw.1 |
Ref | Expression |
---|---|
iunpw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3525 | . . . . . . . 8 | |
2 | 1 | biimprcd 225 | . . . . . . 7 |
3 | 2 | reximdv 2931 | . . . . . 6 |
4 | 3 | com12 31 | . . . . 5 |
5 | ssiun 4372 | . . . . . 6 | |
6 | uniiun 4383 | . . . . . 6 | |
7 | 5, 6 | syl6sseqr 3550 | . . . . 5 |
8 | 4, 7 | impbid1 203 | . . . 4 |
9 | selpw 4019 | . . . 4 | |
10 | eliun 4335 | . . . . 5 | |
11 | selpw 4019 | . . . . . 6 | |
12 | 11 | rexbii 2959 | . . . . 5 |
13 | 10, 12 | bitri 249 | . . . 4 |
14 | 8, 9, 13 | 3bitr4g 288 | . . 3 |
15 | 14 | eqrdv 2454 | . 2 |
16 | ssid 3522 | . . . . 5 | |
17 | iunpw.1 | . . . . . . . 8 | |
18 | 17 | uniex 6596 | . . . . . . 7 |
19 | 18 | elpw 4018 | . . . . . 6 |
20 | eleq2 2530 | . . . . . 6 | |
21 | 19, 20 | syl5bbr 259 | . . . . 5 |
22 | 16, 21 | mpbii 211 | . . . 4 |
23 | eliun 4335 | . . . 4 | |
24 | 22, 23 | sylib 196 | . . 3 |
25 | elssuni 4279 | . . . . . . 7 | |
26 | elpwi 4021 | . . . . . . 7 | |
27 | 25, 26 | anim12i 566 | . . . . . 6 |
28 | eqss 3518 | . . . . . 6 | |
29 | 27, 28 | sylibr 212 | . . . . 5 |
30 | 29 | ex 434 | . . . 4 |
31 | 30 | reximia 2923 | . . 3 |
32 | 24, 31 | syl 16 | . 2 |
33 | 15, 32 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
= wceq 1395 e. wcel 1818 E. wrex 2808
cvv 3109
C_ wss 3475 ~P cpw 4012 U. cuni 4249
U_ ciun 4330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-in 3482 df-ss 3489 df-pw 4014 df-uni 4250 df-iun 4332 |
Copyright terms: Public domain | W3C validator |