Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunss | Unicode version |
Description: Subset theorem for an indexed union. (Contributed by NM, 13-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iunss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 4332 | . . 3 | |
2 | 1 | sseq1i 3527 | . 2 |
3 | abss 3568 | . 2 | |
4 | dfss2 3492 | . . . 4 | |
5 | 4 | ralbii 2888 | . . 3 |
6 | ralcom4 3128 | . . 3 | |
7 | r19.23v 2937 | . . . 4 | |
8 | 7 | albii 1640 | . . 3 |
9 | 5, 6, 8 | 3bitrri 272 | . 2 |
10 | 2, 3, 9 | 3bitri 271 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 e. wcel 1818 { cab 2442
A. wral 2807 E. wrex 2808 C_ wss 3475
U_ ciun 4330 |
This theorem is referenced by: iunss2 4375 djussxp 5153 fun11iun 6760 onfununi 7031 oawordeulem 7222 oaabslem 7311 oaabs2 7313 omabslem 7314 omabs 7315 marypha2lem1 7915 trcl 8180 r1val1 8225 rankuni2b 8292 rankval4 8306 rankbnd 8307 rankbnd2 8308 rankc1 8309 cfslb2n 8669 cfsmolem 8671 hsmexlem2 8828 axdc3lem2 8852 ac6 8881 wuncval2 9146 inar1 9174 tskuni 9182 grur1a 9218 fsuppmapnn0fiublem 12096 fsuppmapnn0fiub 12097 wrdexg 12557 prmreclem4 14437 prmreclem5 14438 prdsval 14852 prdsbas 14854 imasaddfnlem 14925 imasaddflem 14927 imasvscafn 14934 imasvscaf 14936 isacs2 15050 mreacs 15055 acsfn 15056 dmcoass 15393 isacs5 15802 dprdspan 17074 dprd2dlem1 17090 dprd2d2 17093 dmdprdsplit2lem 17094 lbsextlem2 17805 lpival 17893 iunocv 18712 tgidm 19482 iuncon 19929 comppfsc 20033 txtube 20141 txcmplem2 20143 xkococnlem 20160 xkoinjcn 20188 alexsubALTlem3 20549 cnextf 20566 imasdsf1olem 20876 metnrmlem3 21365 ovolfiniun 21912 ovoliunlem2 21914 ovoliun 21916 ovoliunnul 21918 volfiniun 21957 voliunlem1 21960 volsup 21966 uniioombllem3a 21993 uniioombllem3 21994 uniioombllem4 21995 ismbf3d 22061 limciun 22298 taylfval 22754 taylf 22756 disjunsn 27453 eulerpartlemgh 28317 eulerpartlemgs2 28319 cvmlift2lem12 28759 rtrclreclem.min 29070 trpredlem1 29310 trpredss 29312 trpredmintr 29314 dftrpred3g 29316 wfrlem7 29349 frrlem5d 29394 frrlem7 29397 nofulllem5 29466 mblfinlem2 30052 volsupnfl 30059 cnambfre 30063 ntruni 30145 neibastop2lem 30178 filnetlem4 30199 sstotbnd2 30270 equivtotbnd 30274 totbndbnd 30285 prdstotbnd 30290 heiborlem1 30307 iunconlem2 33735 bnj226 33789 bnj517 33943 bnj1118 34040 bnj1137 34051 pclfinN 35624 lcfrlem4 37272 lcfrlem16 37285 lcfr 37312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-in 3482 df-ss 3489 df-iun 4332 |
Copyright terms: Public domain | W3C validator |