Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunss1 | Unicode version |
Description: Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iunss1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv 3564 | . . 3 | |
2 | eliun 4335 | . . 3 | |
3 | eliun 4335 | . . 3 | |
4 | 1, 2, 3 | 3imtr4g 270 | . 2 |
5 | 4 | ssrdv 3509 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 e. wcel 1818
E. wrex 2808 C_ wss 3475 U_ ciun 4330 |
This theorem is referenced by: iuneq1 4344 iunxdif2 4378 oelim2 7263 fsumiun 13635 ovolfiniun 21912 uniioovol 21988 usgreghash2spotv 25066 volsupnfl 30059 bnj1413 34091 bnj1408 34092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-in 3482 df-ss 3489 df-iun 4332 |
Copyright terms: Public domain | W3C validator |