Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunss2 | Unicode version |
Description: A subclass condition on
the members of two indexed classes ( x )
and ( ) that implies a
subclass relation on their indexed
unions. Generalization of Proposition 8.6 of [TakeutiZaring] p. 59.
Compare uniss2 4282. (Contributed by NM,
9-Dec-2004.) |
Ref | Expression |
---|---|
iunss2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssiun 4372 | . . 3 | |
2 | 1 | ralimi 2850 | . 2 |
3 | iunss 4371 | . 2 | |
4 | 2, 3 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wral 2807
E. wrex 2808 C_ wss 3475 U_ ciun 4330 |
This theorem is referenced by: iunxdif2 4378 oaass 7229 odi 7247 omass 7248 oelim2 7263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-in 3482 df-ss 3489 df-iun 4332 |
Copyright terms: Public domain | W3C validator |