MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunsuc Unicode version

Theorem iunsuc 4965
Description: Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypotheses
Ref Expression
iunsuc.1
iunsuc.2
Assertion
Ref Expression
iunsuc
Distinct variable groups:   ,   ,

Proof of Theorem iunsuc
StepHypRef Expression
1 df-suc 4889 . . 3
2 iuneq1 4344 . . 3
31, 2ax-mp 5 . 2
4 iunxun 4412 . 2
5 iunsuc.1 . . . 4
6 iunsuc.2 . . . 4
75, 6iunxsn 4410 . . 3
87uneq2i 3654 . 2
93, 4, 83eqtri 2490 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  e.wcel 1818   cvv 3109  u.cun 3473  {csn 4029  U_ciun 4330  succsuc 4885
This theorem is referenced by:  pwsdompw  8605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-v 3111  df-sbc 3328  df-un 3480  df-in 3482  df-ss 3489  df-sn 4030  df-iun 4332  df-suc 4889
  Copyright terms: Public domain W3C validator