Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunsuc | Unicode version |
Description: Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
iunsuc.1 | |
iunsuc.2 |
Ref | Expression |
---|---|
iunsuc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 4889 | . . 3 | |
2 | iuneq1 4344 | . . 3 | |
3 | 1, 2 | ax-mp 5 | . 2 |
4 | iunxun 4412 | . 2 | |
5 | iunsuc.1 | . . . 4 | |
6 | iunsuc.2 | . . . 4 | |
7 | 5, 6 | iunxsn 4410 | . . 3 |
8 | 7 | uneq2i 3654 | . 2 |
9 | 3, 4, 8 | 3eqtri 2490 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 cvv 3109
u. cun 3473 { csn 4029 U_ ciun 4330
suc csuc 4885 |
This theorem is referenced by: pwsdompw 8605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-sbc 3328 df-un 3480 df-in 3482 df-ss 3489 df-sn 4030 df-iun 4332 df-suc 4889 |
Copyright terms: Public domain | W3C validator |