Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunun | Unicode version |
Description: Separate a union in an indexed union. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
Ref | Expression |
---|---|
iunun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.43 3013 | . . . 4 | |
2 | elun 3644 | . . . . 5 | |
3 | 2 | rexbii 2959 | . . . 4 |
4 | eliun 4335 | . . . . 5 | |
5 | eliun 4335 | . . . . 5 | |
6 | 4, 5 | orbi12i 521 | . . . 4 |
7 | 1, 3, 6 | 3bitr4i 277 | . . 3 |
8 | eliun 4335 | . . 3 | |
9 | elun 3644 | . . 3 | |
10 | 7, 8, 9 | 3bitr4i 277 | . 2 |
11 | 10 | eqriv 2453 | 1 |
Colors of variables: wff setvar class |
Syntax hints: \/ wo 368 = wceq 1395
e. wcel 1818 E. wrex 2808 u. cun 3473
U_ ciun 4330 |
This theorem is referenced by: iununi 4415 oarec 7230 comppfsc 20033 uniiccdif 21987 dftrpred4g 29317 bnj1415 34094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-un 3480 df-iun 4332 |
Copyright terms: Public domain | W3C validator |