Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunxdif2 | Unicode version |
Description: Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004.) |
Ref | Expression |
---|---|
iunxdif2.1 |
Ref | Expression |
---|---|
iunxdif2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss2 4375 | . . 3 | |
2 | difss 3630 | . . . . 5 | |
3 | iunss1 4342 | . . . . 5 | |
4 | 2, 3 | ax-mp 5 | . . . 4 |
5 | iunxdif2.1 | . . . . 5 | |
6 | 5 | cbviunv 4369 | . . . 4 |
7 | 4, 6 | sseqtr4i 3536 | . . 3 |
8 | 1, 7 | jctil 537 | . 2 |
9 | eqss 3518 | . 2 | |
10 | 8, 9 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 A. wral 2807 E. wrex 2808
\ cdif 3472 C_ wss 3475 U_ ciun 4330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 df-iun 4332 |
Copyright terms: Public domain | W3C validator |