Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunxun | Unicode version |
Description: Separate a union in the index of an indexed union. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
Ref | Expression |
---|---|
iunxun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexun 3683 | . . . 4 | |
2 | eliun 4335 | . . . . 5 | |
3 | eliun 4335 | . . . . 5 | |
4 | 2, 3 | orbi12i 521 | . . . 4 |
5 | 1, 4 | bitr4i 252 | . . 3 |
6 | eliun 4335 | . . 3 | |
7 | elun 3644 | . . 3 | |
8 | 5, 6, 7 | 3bitr4i 277 | . 2 |
9 | 8 | eqriv 2453 | 1 |
Colors of variables: wff setvar class |
Syntax hints: \/ wo 368 = wceq 1395
e. wcel 1818 E. wrex 2808 u. cun 3473
U_ ciun 4330 |
This theorem is referenced by: iunsuc 4965 funiunfv 6160 iunfi 7828 kmlem11 8561 ackbij1lem9 8629 fsum2dlem 13585 fsumiun 13635 fprod2dlem 13784 prmreclem4 14437 fiuncmp 19904 ovolfiniun 21912 finiunmbl 21954 volfiniun 21957 voliunlem1 21960 uniioombllem4 21995 iuninc 27428 ofpreima2 27508 indval2 28028 sigaclfu2 28121 measvuni 28185 cvmliftlem10 28739 mrsubvrs 28882 mblfinlem2 30052 iunxprg 32302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-un 3480 df-iun 4332 |
Copyright terms: Public domain | W3C validator |