Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixpfi2 | Unicode version |
Description: A Cartesian product of
finite sets such that all but finitely many are
singletons is finite. (Note that ( x ) and ( x ) are both
possibly dependent on . ) (Contributed by Mario
Carneiro,
25-Jan-2015.) |
Ref | Expression |
---|---|
ixpfi2.1 | |
ixpfi2.2 | |
ixpfi2.3 |
Ref | Expression |
---|---|
ixpfi2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpfi2.1 | . . . 4 | |
2 | inss2 3718 | . . . 4 | |
3 | ssfi 7760 | . . . 4 | |
4 | 1, 2, 3 | sylancl 662 | . . 3 |
5 | inss1 3717 | . . . 4 | |
6 | ixpfi2.2 | . . . . 5 | |
7 | 6 | ralrimiva 2871 | . . . 4 |
8 | ssralv 3563 | . . . 4 | |
9 | 5, 7, 8 | mpsyl 63 | . . 3 |
10 | ixpfi 7837 | . . 3 | |
11 | 4, 9, 10 | syl2anc 661 | . 2 |
12 | resixp 7524 | . . . . 5 | |
13 | 5, 12 | mpan 670 | . . . 4 |
14 | 13 | a1i 11 | . . 3 |
15 | simprl 756 | . . . . . . . . . 10 | |
16 | vex 3112 | . . . . . . . . . . 11 | |
17 | 16 | elixp 7496 | . . . . . . . . . 10 |
18 | 15, 17 | sylib 196 | . . . . . . . . 9 |
19 | 18 | simprd 463 | . . . . . . . 8 |
20 | simprr 757 | . . . . . . . . . 10 | |
21 | vex 3112 | . . . . . . . . . . 11 | |
22 | 21 | elixp 7496 | . . . . . . . . . 10 |
23 | 20, 22 | sylib 196 | . . . . . . . . 9 |
24 | 23 | simprd 463 | . . . . . . . 8 |
25 | r19.26 2984 | . . . . . . . . 9 | |
26 | difss 3630 | . . . . . . . . . . 11 | |
27 | ssralv 3563 | . . . . . . . . . . 11 | |
28 | 26, 27 | ax-mp 5 | . . . . . . . . . 10 |
29 | ixpfi2.3 | . . . . . . . . . . . . . . . 16 | |
30 | 29 | sseld 3502 | . . . . . . . . . . . . . . 15 |
31 | elsni 4054 | . . . . . . . . . . . . . . 15 | |
32 | 30, 31 | syl6 33 | . . . . . . . . . . . . . 14 |
33 | 29 | sseld 3502 | . . . . . . . . . . . . . . 15 |
34 | elsni 4054 | . . . . . . . . . . . . . . 15 | |
35 | 33, 34 | syl6 33 | . . . . . . . . . . . . . 14 |
36 | 32, 35 | anim12d 563 | . . . . . . . . . . . . 13 |
37 | eqtr3 2485 | . . . . . . . . . . . . 13 | |
38 | 36, 37 | syl6 33 | . . . . . . . . . . . 12 |
39 | 38 | ralimdva 2865 | . . . . . . . . . . 11 |
40 | 39 | adantr 465 | . . . . . . . . . 10 |
41 | 28, 40 | syl5 32 | . . . . . . . . 9 |
42 | 25, 41 | syl5bir 218 | . . . . . . . 8 |
43 | 19, 24, 42 | mp2and 679 | . . . . . . 7 |
44 | 43 | biantrud 507 | . . . . . 6 |
45 | fvres 5885 | . . . . . . . 8 | |
46 | fvres 5885 | . . . . . . . 8 | |
47 | 45, 46 | eqeq12d 2479 | . . . . . . 7 |
48 | 47 | ralbiia 2887 | . . . . . 6 |
49 | inundif 3906 | . . . . . . . 8 | |
50 | 49 | raleqi 3058 | . . . . . . 7 |
51 | ralunb 3684 | . . . . . . 7 | |
52 | 50, 51 | bitr3i 251 | . . . . . 6 |
53 | 44, 48, 52 | 3bitr4g 288 | . . . . 5 |
54 | 18 | simpld 459 | . . . . . . 7 |
55 | fnssres 5699 | . . . . . . 7 | |
56 | 54, 5, 55 | sylancl 662 | . . . . . 6 |
57 | 23 | simpld 459 | . . . . . . 7 |
58 | fnssres 5699 | . . . . . . 7 | |
59 | 57, 5, 58 | sylancl 662 | . . . . . 6 |
60 | eqfnfv 5981 | . . . . . 6 | |
61 | 56, 59, 60 | syl2anc 661 | . . . . 5 |
62 | eqfnfv 5981 | . . . . . 6 | |
63 | 54, 57, 62 | syl2anc 661 | . . . . 5 |
64 | 53, 61, 63 | 3bitr4d 285 | . . . 4 |
65 | 64 | ex 434 | . . 3 |
66 | 14, 65 | dom2lem 7575 | . 2 |
67 | f1fi 7827 | . 2 | |
68 | 11, 66, 67 | syl2anc 661 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 \ cdif 3472 u. cun 3473
i^i cin 3474 C_ wss 3475 { csn 4029
e. cmpt 4510 |` cres 5006 Fn wfn 5588
-1-1-> wf1 5590
` cfv 5593 X_ cixp 7489 cfn 7536 |
This theorem is referenced by: psrbaglefi 18023 psrbaglefiOLD 18024 eulerpartlemb 28307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-map 7441 df-pm 7442 df-ixp 7490 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 |
Copyright terms: Public domain | W3C validator |