MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpfn Unicode version

Theorem ixpfn 7495
Description: A nuple is a function. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-May-2014.)
Assertion
Ref Expression
ixpfn
Distinct variable group:   ,

Proof of Theorem ixpfn
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 fneq1 5674 . 2
2 elixp2 7493 . . 3
32simp2bi 1012 . 2
41, 3vtoclga 3173 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  e.wcel 1818  A.wral 2807   cvv 3109  Fnwfn 5588  `cfv 5593  X_cixp 7489
This theorem is referenced by:  ixpprc  7510  undifixp  7525  resixpfo  7527  boxcutc  7532  ixpiunwdom  8038  prdsbasfn  14868  xpsff1o  14965  sscfn1  15186  funcfn2  15238  natfn  15323  dprdvalOLD  17036  pthaus  20139  ptuncnv  20308  ptunhmeo  20309  ptcmplem2  20553  prdsbl  20994  finixpnum  30038  upixp  30220  prdstotbnd  30290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-iota 5556  df-fun 5595  df-fn 5596  df-fv 5601  df-ixp 7490
  Copyright terms: Public domain W3C validator