Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixpn0 | Unicode version |
Description: The infinite Cartesian
product of a family ( x ) with an empty
member is empty. The converse of this theorem is equivalent to the
Axiom of Choice, see ac9 8884. (Contributed by Mario Carneiro,
22-Jun-2016.) |
Ref | Expression |
---|---|
ixpn0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 3794 | . 2 | |
2 | df-ixp 7490 | . . . . . 6 | |
3 | 2 | abeq2i 2584 | . . . . 5 |
4 | 3 | simprbi 464 | . . . 4 |
5 | ne0i 3790 | . . . . 5 | |
6 | 5 | ralimi 2850 | . . . 4 |
7 | 4, 6 | syl 16 | . . 3 |
8 | 7 | exlimiv 1722 | . 2 |
9 | 1, 8 | sylbi 195 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
E. wex 1612 e. wcel 1818 { cab 2442
=/= wne 2652 A. wral 2807 c0 3784 Fn wfn 5588 ` cfv 5593
X_ cixp 7489 |
This theorem is referenced by: ixp0 7522 ac9 8884 ac9s 8894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-v 3111 df-dif 3478 df-nul 3785 df-ixp 7490 |
Copyright terms: Public domain | W3C validator |