MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpn0 Unicode version

Theorem ixpn0 7521
Description: The infinite Cartesian product of a family (x) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 8884. (Contributed by Mario Carneiro, 22-Jun-2016.)
Assertion
Ref Expression
ixpn0

Proof of Theorem ixpn0
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 n0 3794 . 2
2 df-ixp 7490 . . . . . 6
32abeq2i 2584 . . . . 5
43simprbi 464 . . . 4
5 ne0i 3790 . . . . 5
65ralimi 2850 . . . 4
74, 6syl 16 . . 3
87exlimiv 1722 . 2
91, 8sylbi 195 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  E.wex 1612  e.wcel 1818  {cab 2442  =/=wne 2652  A.wral 2807   c0 3784  Fnwfn 5588  `cfv 5593  X_cixp 7489
This theorem is referenced by:  ixp0  7522  ac9  8884  ac9s  8894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-v 3111  df-dif 3478  df-nul 3785  df-ixp 7490
  Copyright terms: Public domain W3C validator