Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixxdisj | Unicode version |
Description: Split an interval into disjoint pieces. (Contributed by Mario Carneiro, 16-Jun-2014.) |
Ref | Expression |
---|---|
ixx.1 | |
ixxun.2 | |
ixxun.3 |
Ref | Expression |
---|---|
ixxdisj |
O
,,,, ,P
,,, ,S
,, ,,, ,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3686 | . . . 4 | |
2 | ixx.1 | . . . . . . . . . . 11 | |
3 | 2 | elixx1 11567 | . . . . . . . . . 10 |
4 | 3 | 3adant3 1016 | . . . . . . . . 9 |
5 | 4 | biimpa 484 | . . . . . . . 8 |
6 | 5 | simp3d 1010 | . . . . . . 7 |
7 | 6 | adantrr 716 | . . . . . 6 |
8 | ixxun.2 | . . . . . . . . . . . 12 | |
9 | 8 | elixx1 11567 | . . . . . . . . . . 11 |
10 | 9 | 3adant1 1014 | . . . . . . . . . 10 |
11 | 10 | biimpa 484 | . . . . . . . . 9 |
12 | 11 | simp2d 1009 | . . . . . . . 8 |
13 | simpl2 1000 | . . . . . . . . 9 | |
14 | 11 | simp1d 1008 | . . . . . . . . 9 |
15 | ixxun.3 | . . . . . . . . 9 | |
16 | 13, 14, 15 | syl2anc 661 | . . . . . . . 8 |
17 | 12, 16 | mpbid 210 | . . . . . . 7 |
18 | 17 | adantrl 715 | . . . . . 6 |
19 | 7, 18 | pm2.65da 576 | . . . . 5 |
20 | 19 | pm2.21d 106 | . . . 4 |
21 | 1, 20 | syl5bi 217 | . . 3 |
22 | 21 | ssrdv 3509 | . 2 |
23 | ss0 3816 | . 2 | |
24 | 22, 23 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 { crab 2811
i^i cin 3474 C_ wss 3475 c0 3784 class class class wbr 4452
(class class class)co 6296 e. cmpt2 6298 cxr 9648 |
This theorem is referenced by: ioodisj 11679 lecldbas 19720 icopnfcld 21275 iocmnfcld 21276 ioombl 21975 ismbf3d 22061 joiniooico 27585 asindmre 30102 dvasin 30103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-xr 9653 |
Copyright terms: Public domain | W3C validator |