Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixxun | Unicode version |
Description: Split an interval into two parts. (Contributed by Mario Carneiro, 16-Jun-2014.) |
Ref | Expression |
---|---|
ixx.1 | |
ixxun.2 | |
ixxun.3 | |
ixxun.4 | |
ixxun.5 | |
ixxun.6 |
Ref | Expression |
---|---|
ixxun |
O
,Q
,,,, ,P
,,, ,S
,, ,,, ,,, , ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 3644 | . . 3 | |
2 | simpl1 999 | . . . . . . . . . 10 | |
3 | simpl2 1000 | . . . . . . . . . 10 | |
4 | ixx.1 | . . . . . . . . . . 11 | |
5 | 4 | elixx1 11567 | . . . . . . . . . 10 |
6 | 2, 3, 5 | syl2anc 661 | . . . . . . . . 9 |
7 | 6 | biimpa 484 | . . . . . . . 8 |
8 | 7 | simp1d 1008 | . . . . . . 7 |
9 | 7 | simp2d 1009 | . . . . . . 7 |
10 | 7 | simp3d 1010 | . . . . . . . 8 |
11 | simplrr 762 | . . . . . . . 8 | |
12 | 3 | adantr 465 | . . . . . . . . 9 |
13 | simpl3 1001 | . . . . . . . . . 10 | |
14 | 13 | adantr 465 | . . . . . . . . 9 |
15 | ixxun.5 | . . . . . . . . 9 | |
16 | 8, 12, 14, 15 | syl3anc 1228 | . . . . . . . 8 |
17 | 10, 11, 16 | mp2and 679 | . . . . . . 7 |
18 | 8, 9, 17 | 3jca 1176 | . . . . . 6 |
19 | ixxun.2 | . . . . . . . . . . 11 | |
20 | 19 | elixx1 11567 | . . . . . . . . . 10 |
21 | 3, 13, 20 | syl2anc 661 | . . . . . . . . 9 |
22 | 21 | biimpa 484 | . . . . . . . 8 |
23 | 22 | simp1d 1008 | . . . . . . 7 |
24 | simplrl 761 | . . . . . . . 8 | |
25 | 22 | simp2d 1009 | . . . . . . . 8 |
26 | 2 | adantr 465 | . . . . . . . . 9 |
27 | 3 | adantr 465 | . . . . . . . . 9 |
28 | ixxun.6 | . . . . . . . . 9 | |
29 | 26, 27, 23, 28 | syl3anc 1228 | . . . . . . . 8 |
30 | 24, 25, 29 | mp2and 679 | . . . . . . 7 |
31 | 22 | simp3d 1010 | . . . . . . 7 |
32 | 23, 30, 31 | 3jca 1176 | . . . . . 6 |
33 | 18, 32 | jaodan 785 | . . . . 5 |
34 | ixxun.4 | . . . . . . . 8 | |
35 | 34 | elixx1 11567 | . . . . . . 7 |
36 | 2, 13, 35 | syl2anc 661 | . . . . . 6 |
37 | 36 | biimpar 485 | . . . . 5 |
38 | 33, 37 | syldan 470 | . . . 4 |
39 | exmid 415 | . . . . 5 | |
40 | df-3an 975 | . . . . . . . . 9 | |
41 | 6, 40 | syl6bb 261 | . . . . . . . 8 |
42 | 41 | adantr 465 | . . . . . . 7 |
43 | 36 | biimpa 484 | . . . . . . . . . 10 |
44 | 43 | simp1d 1008 | . . . . . . . . 9 |
45 | 43 | simp2d 1009 | . . . . . . . . 9 |
46 | 44, 45 | jca 532 | . . . . . . . 8 |
47 | 46 | biantrurd 508 | . . . . . . 7 |
48 | 42, 47 | bitr4d 256 | . . . . . 6 |
49 | 3anan12 986 | . . . . . . . . 9 | |
50 | 21, 49 | syl6bb 261 | . . . . . . . 8 |
51 | 50 | adantr 465 | . . . . . . 7 |
52 | 43 | simp3d 1010 | . . . . . . . . 9 |
53 | 44, 52 | jca 532 | . . . . . . . 8 |
54 | 53 | biantrud 507 | . . . . . . 7 |
55 | 3 | adantr 465 | . . . . . . . 8 |
56 | ixxun.3 | . . . . . . . 8 | |
57 | 55, 44, 56 | syl2anc 661 | . . . . . . 7 |
58 | 51, 54, 57 | 3bitr2d 281 | . . . . . 6 |
59 | 48, 58 | orbi12d 709 | . . . . 5 |
60 | 39, 59 | mpbiri 233 | . . . 4 |
61 | 38, 60 | impbida 832 | . . 3 |
62 | 1, 61 | syl5bb 257 | . 2 |
63 | 62 | eqrdv 2454 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
{ crab 2811 u. cun 3473 class class class wbr 4452
(class class class)co 6296 e. cmpt2 6298 cxr 9648 |
This theorem is referenced by: icoun 11673 snunioo 11675 snunico 11676 snunioc 11677 ioojoin 11680 leordtval2 19713 lecldbas 19720 icopnfcld 21275 iocmnfcld 21276 ioombl 21975 ismbf3d 22061 joiniooico 27585 asindmre 30102 ioounsn 31177 snunioo2 31544 snunioo1 31552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-xr 9653 |
Copyright terms: Public domain | W3C validator |