Step |
Hyp |
Ref |
Expression |
1 |
|
9cn |
|- 9 e. CC |
2 |
|
10re |
|- ; 1 0 e. RR |
3 |
2
|
recni |
|- ; 1 0 e. CC |
4 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
5 |
|
expcl |
|- ( ( ; 1 0 e. CC /\ k e. NN0 ) -> ( ; 1 0 ^ k ) e. CC ) |
6 |
3 4 5
|
sylancr |
|- ( k e. NN -> ( ; 1 0 ^ k ) e. CC ) |
7 |
3
|
a1i |
|- ( k e. NN -> ; 1 0 e. CC ) |
8 |
|
10pos |
|- 0 < ; 1 0 |
9 |
2 8
|
gt0ne0ii |
|- ; 1 0 =/= 0 |
10 |
9
|
a1i |
|- ( k e. NN -> ; 1 0 =/= 0 ) |
11 |
|
nnz |
|- ( k e. NN -> k e. ZZ ) |
12 |
7 10 11
|
expne0d |
|- ( k e. NN -> ( ; 1 0 ^ k ) =/= 0 ) |
13 |
|
divrec |
|- ( ( 9 e. CC /\ ( ; 1 0 ^ k ) e. CC /\ ( ; 1 0 ^ k ) =/= 0 ) -> ( 9 / ( ; 1 0 ^ k ) ) = ( 9 x. ( 1 / ( ; 1 0 ^ k ) ) ) ) |
14 |
1 6 12 13
|
mp3an2i |
|- ( k e. NN -> ( 9 / ( ; 1 0 ^ k ) ) = ( 9 x. ( 1 / ( ; 1 0 ^ k ) ) ) ) |
15 |
7 10 11
|
exprecd |
|- ( k e. NN -> ( ( 1 / ; 1 0 ) ^ k ) = ( 1 / ( ; 1 0 ^ k ) ) ) |
16 |
15
|
oveq2d |
|- ( k e. NN -> ( 9 x. ( ( 1 / ; 1 0 ) ^ k ) ) = ( 9 x. ( 1 / ( ; 1 0 ^ k ) ) ) ) |
17 |
14 16
|
eqtr4d |
|- ( k e. NN -> ( 9 / ( ; 1 0 ^ k ) ) = ( 9 x. ( ( 1 / ; 1 0 ) ^ k ) ) ) |
18 |
17
|
sumeq2i |
|- sum_ k e. NN ( 9 / ( ; 1 0 ^ k ) ) = sum_ k e. NN ( 9 x. ( ( 1 / ; 1 0 ) ^ k ) ) |
19 |
2 9
|
rereccli |
|- ( 1 / ; 1 0 ) e. RR |
20 |
19
|
recni |
|- ( 1 / ; 1 0 ) e. CC |
21 |
|
0re |
|- 0 e. RR |
22 |
2 8
|
recgt0ii |
|- 0 < ( 1 / ; 1 0 ) |
23 |
21 19 22
|
ltleii |
|- 0 <_ ( 1 / ; 1 0 ) |
24 |
19
|
absidi |
|- ( 0 <_ ( 1 / ; 1 0 ) -> ( abs ` ( 1 / ; 1 0 ) ) = ( 1 / ; 1 0 ) ) |
25 |
23 24
|
ax-mp |
|- ( abs ` ( 1 / ; 1 0 ) ) = ( 1 / ; 1 0 ) |
26 |
|
1lt10 |
|- 1 < ; 1 0 |
27 |
|
recgt1 |
|- ( ( ; 1 0 e. RR /\ 0 < ; 1 0 ) -> ( 1 < ; 1 0 <-> ( 1 / ; 1 0 ) < 1 ) ) |
28 |
2 8 27
|
mp2an |
|- ( 1 < ; 1 0 <-> ( 1 / ; 1 0 ) < 1 ) |
29 |
26 28
|
mpbi |
|- ( 1 / ; 1 0 ) < 1 |
30 |
25 29
|
eqbrtri |
|- ( abs ` ( 1 / ; 1 0 ) ) < 1 |
31 |
|
geoisum1c |
|- ( ( 9 e. CC /\ ( 1 / ; 1 0 ) e. CC /\ ( abs ` ( 1 / ; 1 0 ) ) < 1 ) -> sum_ k e. NN ( 9 x. ( ( 1 / ; 1 0 ) ^ k ) ) = ( ( 9 x. ( 1 / ; 1 0 ) ) / ( 1 - ( 1 / ; 1 0 ) ) ) ) |
32 |
1 20 30 31
|
mp3an |
|- sum_ k e. NN ( 9 x. ( ( 1 / ; 1 0 ) ^ k ) ) = ( ( 9 x. ( 1 / ; 1 0 ) ) / ( 1 - ( 1 / ; 1 0 ) ) ) |
33 |
1 3 9
|
divreci |
|- ( 9 / ; 1 0 ) = ( 9 x. ( 1 / ; 1 0 ) ) |
34 |
1 3 9
|
divcan2i |
|- ( ; 1 0 x. ( 9 / ; 1 0 ) ) = 9 |
35 |
|
ax-1cn |
|- 1 e. CC |
36 |
3 35 20
|
subdii |
|- ( ; 1 0 x. ( 1 - ( 1 / ; 1 0 ) ) ) = ( ( ; 1 0 x. 1 ) - ( ; 1 0 x. ( 1 / ; 1 0 ) ) ) |
37 |
3
|
mulid1i |
|- ( ; 1 0 x. 1 ) = ; 1 0 |
38 |
3 9
|
recidi |
|- ( ; 1 0 x. ( 1 / ; 1 0 ) ) = 1 |
39 |
37 38
|
oveq12i |
|- ( ( ; 1 0 x. 1 ) - ( ; 1 0 x. ( 1 / ; 1 0 ) ) ) = ( ; 1 0 - 1 ) |
40 |
|
10m1e9 |
|- ( ; 1 0 - 1 ) = 9 |
41 |
36 39 40
|
3eqtrri |
|- 9 = ( ; 1 0 x. ( 1 - ( 1 / ; 1 0 ) ) ) |
42 |
34 41
|
eqtri |
|- ( ; 1 0 x. ( 9 / ; 1 0 ) ) = ( ; 1 0 x. ( 1 - ( 1 / ; 1 0 ) ) ) |
43 |
|
9re |
|- 9 e. RR |
44 |
43 2 9
|
redivcli |
|- ( 9 / ; 1 0 ) e. RR |
45 |
44
|
recni |
|- ( 9 / ; 1 0 ) e. CC |
46 |
35 20
|
subcli |
|- ( 1 - ( 1 / ; 1 0 ) ) e. CC |
47 |
45 46 3 9
|
mulcani |
|- ( ( ; 1 0 x. ( 9 / ; 1 0 ) ) = ( ; 1 0 x. ( 1 - ( 1 / ; 1 0 ) ) ) <-> ( 9 / ; 1 0 ) = ( 1 - ( 1 / ; 1 0 ) ) ) |
48 |
42 47
|
mpbi |
|- ( 9 / ; 1 0 ) = ( 1 - ( 1 / ; 1 0 ) ) |
49 |
33 48
|
oveq12i |
|- ( ( 9 / ; 1 0 ) / ( 9 / ; 1 0 ) ) = ( ( 9 x. ( 1 / ; 1 0 ) ) / ( 1 - ( 1 / ; 1 0 ) ) ) |
50 |
|
9pos |
|- 0 < 9 |
51 |
43 2 50 8
|
divgt0ii |
|- 0 < ( 9 / ; 1 0 ) |
52 |
44 51
|
gt0ne0ii |
|- ( 9 / ; 1 0 ) =/= 0 |
53 |
45 52
|
dividi |
|- ( ( 9 / ; 1 0 ) / ( 9 / ; 1 0 ) ) = 1 |
54 |
32 49 53
|
3eqtr2i |
|- sum_ k e. NN ( 9 x. ( ( 1 / ; 1 0 ) ^ k ) ) = 1 |
55 |
18 54
|
eqtri |
|- sum_ k e. NN ( 9 / ( ; 1 0 ^ k ) ) = 1 |