Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
|- 0 e. RR |
2 |
|
ax-rnegex |
|- ( 0 e. RR -> E. c e. RR ( 0 + c ) = 0 ) |
3 |
|
oveq2 |
|- ( c = 0 -> ( 0 + c ) = ( 0 + 0 ) ) |
4 |
3
|
eqeq1d |
|- ( c = 0 -> ( ( 0 + c ) = 0 <-> ( 0 + 0 ) = 0 ) ) |
5 |
4
|
biimpd |
|- ( c = 0 -> ( ( 0 + c ) = 0 -> ( 0 + 0 ) = 0 ) ) |
6 |
5
|
adantld |
|- ( c = 0 -> ( ( c e. RR /\ ( 0 + c ) = 0 ) -> ( 0 + 0 ) = 0 ) ) |
7 |
|
ax-rrecex |
|- ( ( c e. RR /\ c =/= 0 ) -> E. y e. RR ( c x. y ) = 1 ) |
8 |
7
|
adantlr |
|- ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) -> E. y e. RR ( c x. y ) = 1 ) |
9 |
|
simplll |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> c e. RR ) |
10 |
9
|
recnd |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> c e. CC ) |
11 |
|
simprl |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> y e. RR ) |
12 |
11
|
recnd |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> y e. CC ) |
13 |
|
0cn |
|- 0 e. CC |
14 |
|
mulass |
|- ( ( c e. CC /\ y e. CC /\ 0 e. CC ) -> ( ( c x. y ) x. 0 ) = ( c x. ( y x. 0 ) ) ) |
15 |
13 14
|
mp3an3 |
|- ( ( c e. CC /\ y e. CC ) -> ( ( c x. y ) x. 0 ) = ( c x. ( y x. 0 ) ) ) |
16 |
10 12 15
|
syl2anc |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( c x. y ) x. 0 ) = ( c x. ( y x. 0 ) ) ) |
17 |
|
oveq1 |
|- ( ( c x. y ) = 1 -> ( ( c x. y ) x. 0 ) = ( 1 x. 0 ) ) |
18 |
13
|
mulid2i |
|- ( 1 x. 0 ) = 0 |
19 |
17 18
|
eqtrdi |
|- ( ( c x. y ) = 1 -> ( ( c x. y ) x. 0 ) = 0 ) |
20 |
19
|
ad2antll |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( c x. y ) x. 0 ) = 0 ) |
21 |
16 20
|
eqtr3d |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( c x. ( y x. 0 ) ) = 0 ) |
22 |
21
|
oveq1d |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( c x. ( y x. 0 ) ) + 0 ) = ( 0 + 0 ) ) |
23 |
|
simpllr |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( 0 + c ) = 0 ) |
24 |
23
|
oveq1d |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( 0 + c ) x. ( y x. 0 ) ) = ( 0 x. ( y x. 0 ) ) ) |
25 |
|
remulcl |
|- ( ( y e. RR /\ 0 e. RR ) -> ( y x. 0 ) e. RR ) |
26 |
1 25
|
mpan2 |
|- ( y e. RR -> ( y x. 0 ) e. RR ) |
27 |
26
|
ad2antrl |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( y x. 0 ) e. RR ) |
28 |
27
|
recnd |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( y x. 0 ) e. CC ) |
29 |
|
adddir |
|- ( ( 0 e. CC /\ c e. CC /\ ( y x. 0 ) e. CC ) -> ( ( 0 + c ) x. ( y x. 0 ) ) = ( ( 0 x. ( y x. 0 ) ) + ( c x. ( y x. 0 ) ) ) ) |
30 |
13 10 28 29
|
mp3an2i |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( 0 + c ) x. ( y x. 0 ) ) = ( ( 0 x. ( y x. 0 ) ) + ( c x. ( y x. 0 ) ) ) ) |
31 |
24 30
|
eqtr3d |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( 0 x. ( y x. 0 ) ) = ( ( 0 x. ( y x. 0 ) ) + ( c x. ( y x. 0 ) ) ) ) |
32 |
31
|
oveq1d |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( 0 x. ( y x. 0 ) ) + 0 ) = ( ( ( 0 x. ( y x. 0 ) ) + ( c x. ( y x. 0 ) ) ) + 0 ) ) |
33 |
|
remulcl |
|- ( ( 0 e. RR /\ ( y x. 0 ) e. RR ) -> ( 0 x. ( y x. 0 ) ) e. RR ) |
34 |
1 26 33
|
sylancr |
|- ( y e. RR -> ( 0 x. ( y x. 0 ) ) e. RR ) |
35 |
34
|
ad2antrl |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( 0 x. ( y x. 0 ) ) e. RR ) |
36 |
35
|
recnd |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( 0 x. ( y x. 0 ) ) e. CC ) |
37 |
|
remulcl |
|- ( ( c e. RR /\ ( y x. 0 ) e. RR ) -> ( c x. ( y x. 0 ) ) e. RR ) |
38 |
9 27 37
|
syl2anc |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( c x. ( y x. 0 ) ) e. RR ) |
39 |
38
|
recnd |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( c x. ( y x. 0 ) ) e. CC ) |
40 |
|
addass |
|- ( ( ( 0 x. ( y x. 0 ) ) e. CC /\ ( c x. ( y x. 0 ) ) e. CC /\ 0 e. CC ) -> ( ( ( 0 x. ( y x. 0 ) ) + ( c x. ( y x. 0 ) ) ) + 0 ) = ( ( 0 x. ( y x. 0 ) ) + ( ( c x. ( y x. 0 ) ) + 0 ) ) ) |
41 |
13 40
|
mp3an3 |
|- ( ( ( 0 x. ( y x. 0 ) ) e. CC /\ ( c x. ( y x. 0 ) ) e. CC ) -> ( ( ( 0 x. ( y x. 0 ) ) + ( c x. ( y x. 0 ) ) ) + 0 ) = ( ( 0 x. ( y x. 0 ) ) + ( ( c x. ( y x. 0 ) ) + 0 ) ) ) |
42 |
36 39 41
|
syl2anc |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( ( 0 x. ( y x. 0 ) ) + ( c x. ( y x. 0 ) ) ) + 0 ) = ( ( 0 x. ( y x. 0 ) ) + ( ( c x. ( y x. 0 ) ) + 0 ) ) ) |
43 |
32 42
|
eqtr2d |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( 0 x. ( y x. 0 ) ) + ( ( c x. ( y x. 0 ) ) + 0 ) ) = ( ( 0 x. ( y x. 0 ) ) + 0 ) ) |
44 |
26 37
|
sylan2 |
|- ( ( c e. RR /\ y e. RR ) -> ( c x. ( y x. 0 ) ) e. RR ) |
45 |
|
readdcl |
|- ( ( ( c x. ( y x. 0 ) ) e. RR /\ 0 e. RR ) -> ( ( c x. ( y x. 0 ) ) + 0 ) e. RR ) |
46 |
44 1 45
|
sylancl |
|- ( ( c e. RR /\ y e. RR ) -> ( ( c x. ( y x. 0 ) ) + 0 ) e. RR ) |
47 |
9 11 46
|
syl2anc |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( c x. ( y x. 0 ) ) + 0 ) e. RR ) |
48 |
|
readdcan |
|- ( ( ( ( c x. ( y x. 0 ) ) + 0 ) e. RR /\ 0 e. RR /\ ( 0 x. ( y x. 0 ) ) e. RR ) -> ( ( ( 0 x. ( y x. 0 ) ) + ( ( c x. ( y x. 0 ) ) + 0 ) ) = ( ( 0 x. ( y x. 0 ) ) + 0 ) <-> ( ( c x. ( y x. 0 ) ) + 0 ) = 0 ) ) |
49 |
1 48
|
mp3an2 |
|- ( ( ( ( c x. ( y x. 0 ) ) + 0 ) e. RR /\ ( 0 x. ( y x. 0 ) ) e. RR ) -> ( ( ( 0 x. ( y x. 0 ) ) + ( ( c x. ( y x. 0 ) ) + 0 ) ) = ( ( 0 x. ( y x. 0 ) ) + 0 ) <-> ( ( c x. ( y x. 0 ) ) + 0 ) = 0 ) ) |
50 |
47 35 49
|
syl2anc |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( ( 0 x. ( y x. 0 ) ) + ( ( c x. ( y x. 0 ) ) + 0 ) ) = ( ( 0 x. ( y x. 0 ) ) + 0 ) <-> ( ( c x. ( y x. 0 ) ) + 0 ) = 0 ) ) |
51 |
43 50
|
mpbid |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( ( c x. ( y x. 0 ) ) + 0 ) = 0 ) |
52 |
22 51
|
eqtr3d |
|- ( ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) /\ ( y e. RR /\ ( c x. y ) = 1 ) ) -> ( 0 + 0 ) = 0 ) |
53 |
8 52
|
rexlimddv |
|- ( ( ( c e. RR /\ ( 0 + c ) = 0 ) /\ c =/= 0 ) -> ( 0 + 0 ) = 0 ) |
54 |
53
|
expcom |
|- ( c =/= 0 -> ( ( c e. RR /\ ( 0 + c ) = 0 ) -> ( 0 + 0 ) = 0 ) ) |
55 |
6 54
|
pm2.61ine |
|- ( ( c e. RR /\ ( 0 + c ) = 0 ) -> ( 0 + 0 ) = 0 ) |
56 |
55
|
rexlimiva |
|- ( E. c e. RR ( 0 + c ) = 0 -> ( 0 + 0 ) = 0 ) |
57 |
1 2 56
|
mp2b |
|- ( 0 + 0 ) = 0 |