Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
|- (/) e. _V |
2 |
|
base0 |
|- (/) = ( Base ` (/) ) |
3 |
|
00lss |
|- (/) = ( LSubSp ` (/) ) |
4 |
|
eqid |
|- ( LSpan ` (/) ) = ( LSpan ` (/) ) |
5 |
2 3 4
|
lspfval |
|- ( (/) e. _V -> ( LSpan ` (/) ) = ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) ) |
6 |
1 5
|
ax-mp |
|- ( LSpan ` (/) ) = ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) |
7 |
|
eqid |
|- ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) = ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) |
8 |
7
|
dmmpt |
|- dom ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) = { a e. ~P (/) | |^| { b e. (/) | a C_ b } e. _V } |
9 |
|
rab0 |
|- { b e. (/) | a C_ b } = (/) |
10 |
9
|
inteqi |
|- |^| { b e. (/) | a C_ b } = |^| (/) |
11 |
|
int0 |
|- |^| (/) = _V |
12 |
10 11
|
eqtri |
|- |^| { b e. (/) | a C_ b } = _V |
13 |
|
vprc |
|- -. _V e. _V |
14 |
12 13
|
eqneltri |
|- -. |^| { b e. (/) | a C_ b } e. _V |
15 |
14
|
rgenw |
|- A. a e. ~P (/) -. |^| { b e. (/) | a C_ b } e. _V |
16 |
|
rabeq0 |
|- ( { a e. ~P (/) | |^| { b e. (/) | a C_ b } e. _V } = (/) <-> A. a e. ~P (/) -. |^| { b e. (/) | a C_ b } e. _V ) |
17 |
15 16
|
mpbir |
|- { a e. ~P (/) | |^| { b e. (/) | a C_ b } e. _V } = (/) |
18 |
8 17
|
eqtri |
|- dom ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) = (/) |
19 |
|
mptrel |
|- Rel ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) |
20 |
|
reldm0 |
|- ( Rel ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) -> ( ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) = (/) <-> dom ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) = (/) ) ) |
21 |
19 20
|
ax-mp |
|- ( ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) = (/) <-> dom ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) = (/) ) |
22 |
18 21
|
mpbir |
|- ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) = (/) |
23 |
6 22
|
eqtr2i |
|- (/) = ( LSpan ` (/) ) |