| Step |
Hyp |
Ref |
Expression |
| 1 |
|
noel |
|- -. a e. (/) |
| 2 |
|
base0 |
|- (/) = ( Base ` (/) ) |
| 3 |
|
eqid |
|- ( LSubSp ` (/) ) = ( LSubSp ` (/) ) |
| 4 |
2 3
|
lssss |
|- ( a e. ( LSubSp ` (/) ) -> a C_ (/) ) |
| 5 |
|
ss0 |
|- ( a C_ (/) -> a = (/) ) |
| 6 |
4 5
|
syl |
|- ( a e. ( LSubSp ` (/) ) -> a = (/) ) |
| 7 |
3
|
lssn0 |
|- ( a e. ( LSubSp ` (/) ) -> a =/= (/) ) |
| 8 |
7
|
neneqd |
|- ( a e. ( LSubSp ` (/) ) -> -. a = (/) ) |
| 9 |
6 8
|
pm2.65i |
|- -. a e. ( LSubSp ` (/) ) |
| 10 |
1 9
|
2false |
|- ( a e. (/) <-> a e. ( LSubSp ` (/) ) ) |
| 11 |
10
|
eqriv |
|- (/) = ( LSubSp ` (/) ) |