Metamath Proof Explorer


Theorem 00ply1bas

Description: Lemma for ply1basfvi and deg1fvi . (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Assertion 00ply1bas
|- (/) = ( Base ` ( Poly1 ` (/) ) )

Proof

Step Hyp Ref Expression
1 noel
 |-  -. a e. (/)
2 noel
 |-  -. ( a ` ( 1o X. { 0 } ) ) e. (/)
3 eqid
 |-  ( Poly1 ` (/) ) = ( Poly1 ` (/) )
4 eqid
 |-  ( Base ` ( Poly1 ` (/) ) ) = ( Base ` ( Poly1 ` (/) ) )
5 base0
 |-  (/) = ( Base ` (/) )
6 3 4 5 ply1basf
 |-  ( a e. ( Base ` ( Poly1 ` (/) ) ) -> a : ( NN0 ^m 1o ) --> (/) )
7 0nn0
 |-  0 e. NN0
8 7 fconst6
 |-  ( 1o X. { 0 } ) : 1o --> NN0
9 nn0ex
 |-  NN0 e. _V
10 1oex
 |-  1o e. _V
11 9 10 elmap
 |-  ( ( 1o X. { 0 } ) e. ( NN0 ^m 1o ) <-> ( 1o X. { 0 } ) : 1o --> NN0 )
12 8 11 mpbir
 |-  ( 1o X. { 0 } ) e. ( NN0 ^m 1o )
13 ffvelrn
 |-  ( ( a : ( NN0 ^m 1o ) --> (/) /\ ( 1o X. { 0 } ) e. ( NN0 ^m 1o ) ) -> ( a ` ( 1o X. { 0 } ) ) e. (/) )
14 6 12 13 sylancl
 |-  ( a e. ( Base ` ( Poly1 ` (/) ) ) -> ( a ` ( 1o X. { 0 } ) ) e. (/) )
15 2 14 mto
 |-  -. a e. ( Base ` ( Poly1 ` (/) ) )
16 1 15 2false
 |-  ( a e. (/) <-> a e. ( Base ` ( Poly1 ` (/) ) ) )
17 16 eqriv
 |-  (/) = ( Base ` ( Poly1 ` (/) ) )