| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ring.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | 0ring.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | 0ring01eq.1 |  |-  .1. = ( 1r ` R ) | 
						
							| 4 |  | eqcom |  |-  ( .0. = .1. <-> .1. = .0. ) | 
						
							| 5 | 1 2 | ring0cl |  |-  ( R e. Ring -> .0. e. B ) | 
						
							| 6 | 5 | ne0d |  |-  ( R e. Ring -> B =/= (/) ) | 
						
							| 7 | 5 | adantr |  |-  ( ( R e. Ring /\ x e. B ) -> .0. e. B ) | 
						
							| 8 | 1 3 2 | ring1eq0 |  |-  ( ( R e. Ring /\ x e. B /\ .0. e. B ) -> ( .1. = .0. -> x = .0. ) ) | 
						
							| 9 | 7 8 | mpd3an3 |  |-  ( ( R e. Ring /\ x e. B ) -> ( .1. = .0. -> x = .0. ) ) | 
						
							| 10 | 9 | impancom |  |-  ( ( R e. Ring /\ .1. = .0. ) -> ( x e. B -> x = .0. ) ) | 
						
							| 11 | 10 | ralrimiv |  |-  ( ( R e. Ring /\ .1. = .0. ) -> A. x e. B x = .0. ) | 
						
							| 12 |  | eqsn |  |-  ( B =/= (/) -> ( B = { .0. } <-> A. x e. B x = .0. ) ) | 
						
							| 13 | 12 | biimpar |  |-  ( ( B =/= (/) /\ A. x e. B x = .0. ) -> B = { .0. } ) | 
						
							| 14 | 6 11 13 | syl2an2r |  |-  ( ( R e. Ring /\ .1. = .0. ) -> B = { .0. } ) | 
						
							| 15 | 4 14 | sylan2b |  |-  ( ( R e. Ring /\ .0. = .1. ) -> B = { .0. } ) |