| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ring.b |
|- B = ( Base ` R ) |
| 2 |
|
0ring.0 |
|- .0. = ( 0g ` R ) |
| 3 |
|
0ring01eq.1 |
|- .1. = ( 1r ` R ) |
| 4 |
1
|
fvexi |
|- B e. _V |
| 5 |
|
hashv01gt1 |
|- ( B e. _V -> ( ( # ` B ) = 0 \/ ( # ` B ) = 1 \/ 1 < ( # ` B ) ) ) |
| 6 |
4 5
|
ax-mp |
|- ( ( # ` B ) = 0 \/ ( # ` B ) = 1 \/ 1 < ( # ` B ) ) |
| 7 |
|
hasheq0 |
|- ( B e. _V -> ( ( # ` B ) = 0 <-> B = (/) ) ) |
| 8 |
4 7
|
ax-mp |
|- ( ( # ` B ) = 0 <-> B = (/) ) |
| 9 |
|
ne0i |
|- ( .0. e. B -> B =/= (/) ) |
| 10 |
|
eqneqall |
|- ( B = (/) -> ( B =/= (/) -> ( ( # ` B ) =/= 1 -> .0. =/= .1. ) ) ) |
| 11 |
9 10
|
syl5com |
|- ( .0. e. B -> ( B = (/) -> ( ( # ` B ) =/= 1 -> .0. =/= .1. ) ) ) |
| 12 |
8 11
|
biimtrid |
|- ( .0. e. B -> ( ( # ` B ) = 0 -> ( ( # ` B ) =/= 1 -> .0. =/= .1. ) ) ) |
| 13 |
1 2
|
ring0cl |
|- ( R e. Ring -> .0. e. B ) |
| 14 |
12 13
|
syl11 |
|- ( ( # ` B ) = 0 -> ( R e. Ring -> ( ( # ` B ) =/= 1 -> .0. =/= .1. ) ) ) |
| 15 |
|
eqneqall |
|- ( ( # ` B ) = 1 -> ( ( # ` B ) =/= 1 -> .0. =/= .1. ) ) |
| 16 |
15
|
a1d |
|- ( ( # ` B ) = 1 -> ( R e. Ring -> ( ( # ` B ) =/= 1 -> .0. =/= .1. ) ) ) |
| 17 |
1 3 2
|
ring1ne0 |
|- ( ( R e. Ring /\ 1 < ( # ` B ) ) -> .1. =/= .0. ) |
| 18 |
17
|
necomd |
|- ( ( R e. Ring /\ 1 < ( # ` B ) ) -> .0. =/= .1. ) |
| 19 |
18
|
ex |
|- ( R e. Ring -> ( 1 < ( # ` B ) -> .0. =/= .1. ) ) |
| 20 |
19
|
a1i |
|- ( ( # ` B ) =/= 1 -> ( R e. Ring -> ( 1 < ( # ` B ) -> .0. =/= .1. ) ) ) |
| 21 |
20
|
com13 |
|- ( 1 < ( # ` B ) -> ( R e. Ring -> ( ( # ` B ) =/= 1 -> .0. =/= .1. ) ) ) |
| 22 |
14 16 21
|
3jaoi |
|- ( ( ( # ` B ) = 0 \/ ( # ` B ) = 1 \/ 1 < ( # ` B ) ) -> ( R e. Ring -> ( ( # ` B ) =/= 1 -> .0. =/= .1. ) ) ) |
| 23 |
6 22
|
ax-mp |
|- ( R e. Ring -> ( ( # ` B ) =/= 1 -> .0. =/= .1. ) ) |
| 24 |
23
|
necon4d |
|- ( R e. Ring -> ( .0. = .1. -> ( # ` B ) = 1 ) ) |
| 25 |
24
|
imp |
|- ( ( R e. Ring /\ .0. = .1. ) -> ( # ` B ) = 1 ) |
| 26 |
1 2
|
0ring |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> B = { .0. } ) |
| 27 |
25 26
|
syldan |
|- ( ( R e. Ring /\ .0. = .1. ) -> B = { .0. } ) |