Description: The identically zero operator is bounded. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0bdop | |- 0hop e. BndLinOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lnop | |- 0hop e. LinOp |
|
| 2 | nmop0 | |- ( normop ` 0hop ) = 0 |
|
| 3 | 0ltpnf | |- 0 < +oo |
|
| 4 | 2 3 | eqbrtri | |- ( normop ` 0hop ) < +oo |
| 5 | elbdop | |- ( 0hop e. BndLinOp <-> ( 0hop e. LinOp /\ ( normop ` 0hop ) < +oo ) ) |
|
| 6 | 1 4 5 | mpbir2an | |- 0hop e. BndLinOp |