Description: The identically zero operator is bounded. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | 0bdop | |- 0hop e. BndLinOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lnop | |- 0hop e. LinOp |
|
2 | nmop0 | |- ( normop ` 0hop ) = 0 |
|
3 | 0ltpnf | |- 0 < +oo |
|
4 | 2 3 | eqbrtri | |- ( normop ` 0hop ) < +oo |
5 | elbdop | |- ( 0hop e. BndLinOp <-> ( 0hop e. LinOp /\ ( normop ` 0hop ) < +oo ) ) |
|
6 | 1 4 5 | mpbir2an | |- 0hop e. BndLinOp |