Description: The empty set is closed. Part of Theorem 6.1(1) of Munkres p. 93. (Contributed by NM, 4-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0cld | |- ( J e. Top -> (/) e. ( Clsd ` J ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dif0 | |- ( U. J \ (/) ) = U. J | |
| 2 | 1 | topopn | |- ( J e. Top -> ( U. J \ (/) ) e. J ) | 
| 3 | 0ss | |- (/) C_ U. J | |
| 4 | eqid | |- U. J = U. J | |
| 5 | 4 | iscld2 | |- ( ( J e. Top /\ (/) C_ U. J ) -> ( (/) e. ( Clsd ` J ) <-> ( U. J \ (/) ) e. J ) ) | 
| 6 | 3 5 | mpan2 | |- ( J e. Top -> ( (/) e. ( Clsd ` J ) <-> ( U. J \ (/) ) e. J ) ) | 
| 7 | 2 6 | mpbird | |- ( J e. Top -> (/) e. ( Clsd ` J ) ) |