Step |
Hyp |
Ref |
Expression |
1 |
|
0clwlk.v |
|- V = ( Vtx ` G ) |
2 |
1
|
0wlk |
|- ( G e. X -> ( (/) ( Walks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
3 |
2
|
anbi2d |
|- ( G e. X -> ( ( ( P ` 0 ) = ( P ` ( # ` (/) ) ) /\ (/) ( Walks ` G ) P ) <-> ( ( P ` 0 ) = ( P ` ( # ` (/) ) ) /\ P : ( 0 ... 0 ) --> V ) ) ) |
4 |
|
isclwlk |
|- ( (/) ( ClWalks ` G ) P <-> ( (/) ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` (/) ) ) ) ) |
5 |
4
|
biancomi |
|- ( (/) ( ClWalks ` G ) P <-> ( ( P ` 0 ) = ( P ` ( # ` (/) ) ) /\ (/) ( Walks ` G ) P ) ) |
6 |
|
hash0 |
|- ( # ` (/) ) = 0 |
7 |
6
|
eqcomi |
|- 0 = ( # ` (/) ) |
8 |
7
|
fveq2i |
|- ( P ` 0 ) = ( P ` ( # ` (/) ) ) |
9 |
8
|
biantrur |
|- ( P : ( 0 ... 0 ) --> V <-> ( ( P ` 0 ) = ( P ` ( # ` (/) ) ) /\ P : ( 0 ... 0 ) --> V ) ) |
10 |
3 5 9
|
3bitr4g |
|- ( G e. X -> ( (/) ( ClWalks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |