Description: There is no closed walk in the empty set (i.e. the null graph). (Contributed by Alexander van der Vekens, 2-Sep-2018) (Revised by AV, 5-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | 0clwlk0 | |- ( ClWalks ` (/) ) = (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlkswks | |- ( ClWalks ` (/) ) C_ ( Walks ` (/) ) |
|
2 | 0wlk0 | |- ( Walks ` (/) ) = (/) |
|
3 | sseq0 | |- ( ( ( ClWalks ` (/) ) C_ ( Walks ` (/) ) /\ ( Walks ` (/) ) = (/) ) -> ( ClWalks ` (/) ) = (/) ) |
|
4 | 1 2 3 | mp2an | |- ( ClWalks ` (/) ) = (/) |