| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0clwlk.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | fz0sn |  |-  ( 0 ... 0 ) = { 0 } | 
						
							| 3 | 2 | eqcomi |  |-  { 0 } = ( 0 ... 0 ) | 
						
							| 4 | 3 | feq2i |  |-  ( P : { 0 } --> { X } <-> P : ( 0 ... 0 ) --> { X } ) | 
						
							| 5 | 4 | biimpi |  |-  ( P : { 0 } --> { X } -> P : ( 0 ... 0 ) --> { X } ) | 
						
							| 6 | 5 | 3ad2ant3 |  |-  ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> P : ( 0 ... 0 ) --> { X } ) | 
						
							| 7 |  | snssi |  |-  ( X e. V -> { X } C_ V ) | 
						
							| 8 | 7 | 3ad2ant1 |  |-  ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> { X } C_ V ) | 
						
							| 9 | 6 8 | fssd |  |-  ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> P : ( 0 ... 0 ) --> V ) | 
						
							| 10 |  | breq1 |  |-  ( F = (/) -> ( F ( ClWalks ` G ) P <-> (/) ( ClWalks ` G ) P ) ) | 
						
							| 11 | 10 | 3ad2ant2 |  |-  ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> ( F ( ClWalks ` G ) P <-> (/) ( ClWalks ` G ) P ) ) | 
						
							| 12 | 1 | 1vgrex |  |-  ( X e. V -> G e. _V ) | 
						
							| 13 | 1 | 0clwlk |  |-  ( G e. _V -> ( (/) ( ClWalks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( X e. V -> ( (/) ( ClWalks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) | 
						
							| 15 | 14 | 3ad2ant1 |  |-  ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> ( (/) ( ClWalks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) | 
						
							| 16 | 11 15 | bitrd |  |-  ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> ( F ( ClWalks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) | 
						
							| 17 | 9 16 | mpbird |  |-  ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> F ( ClWalks ` G ) P ) |