Metamath Proof Explorer


Theorem 0cn

Description: Zero is a complex number. See also 0cnALT . (Contributed by NM, 19-Feb-2005)

Ref Expression
Assertion 0cn
|- 0 e. CC

Proof

Step Hyp Ref Expression
1 ax-i2m1
 |-  ( ( _i x. _i ) + 1 ) = 0
2 ax-icn
 |-  _i e. CC
3 mulcl
 |-  ( ( _i e. CC /\ _i e. CC ) -> ( _i x. _i ) e. CC )
4 2 2 3 mp2an
 |-  ( _i x. _i ) e. CC
5 ax-1cn
 |-  1 e. CC
6 addcl
 |-  ( ( ( _i x. _i ) e. CC /\ 1 e. CC ) -> ( ( _i x. _i ) + 1 ) e. CC )
7 4 5 6 mp2an
 |-  ( ( _i x. _i ) + 1 ) e. CC
8 1 7 eqeltrri
 |-  0 e. CC