| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
|- _i e. CC |
| 2 |
|
cnre |
|- ( _i e. CC -> E. x e. RR E. y e. RR _i = ( x + ( _i x. y ) ) ) |
| 3 |
|
ax-rnegex |
|- ( x e. RR -> E. z e. RR ( x + z ) = 0 ) |
| 4 |
|
readdcl |
|- ( ( x e. RR /\ z e. RR ) -> ( x + z ) e. RR ) |
| 5 |
|
eleq1 |
|- ( ( x + z ) = 0 -> ( ( x + z ) e. RR <-> 0 e. RR ) ) |
| 6 |
4 5
|
syl5ibcom |
|- ( ( x e. RR /\ z e. RR ) -> ( ( x + z ) = 0 -> 0 e. RR ) ) |
| 7 |
6
|
rexlimdva |
|- ( x e. RR -> ( E. z e. RR ( x + z ) = 0 -> 0 e. RR ) ) |
| 8 |
3 7
|
mpd |
|- ( x e. RR -> 0 e. RR ) |
| 9 |
8
|
adantr |
|- ( ( x e. RR /\ E. y e. RR _i = ( x + ( _i x. y ) ) ) -> 0 e. RR ) |
| 10 |
9
|
rexlimiva |
|- ( E. x e. RR E. y e. RR _i = ( x + ( _i x. y ) ) -> 0 e. RR ) |
| 11 |
1 2 10
|
mp2b |
|- 0 e. RR |
| 12 |
11
|
recni |
|- 0 e. CC |