Step |
Hyp |
Ref |
Expression |
1 |
|
0cn |
|- 0 e. CC |
2 |
1
|
fconst6 |
|- ( ~H X. { 0 } ) : ~H --> CC |
3 |
|
1rp |
|- 1 e. RR+ |
4 |
|
c0ex |
|- 0 e. _V |
5 |
4
|
fvconst2 |
|- ( w e. ~H -> ( ( ~H X. { 0 } ) ` w ) = 0 ) |
6 |
4
|
fvconst2 |
|- ( x e. ~H -> ( ( ~H X. { 0 } ) ` x ) = 0 ) |
7 |
5 6
|
oveqan12rd |
|- ( ( x e. ~H /\ w e. ~H ) -> ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) = ( 0 - 0 ) ) |
8 |
7
|
adantlr |
|- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) = ( 0 - 0 ) ) |
9 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
10 |
8 9
|
eqtrdi |
|- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) = 0 ) |
11 |
10
|
fveq2d |
|- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) = ( abs ` 0 ) ) |
12 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
13 |
11 12
|
eqtrdi |
|- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) = 0 ) |
14 |
|
rpgt0 |
|- ( y e. RR+ -> 0 < y ) |
15 |
14
|
ad2antlr |
|- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> 0 < y ) |
16 |
13 15
|
eqbrtrd |
|- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) |
17 |
16
|
a1d |
|- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( ( normh ` ( w -h x ) ) < 1 -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) ) |
18 |
17
|
ralrimiva |
|- ( ( x e. ~H /\ y e. RR+ ) -> A. w e. ~H ( ( normh ` ( w -h x ) ) < 1 -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) ) |
19 |
|
breq2 |
|- ( z = 1 -> ( ( normh ` ( w -h x ) ) < z <-> ( normh ` ( w -h x ) ) < 1 ) ) |
20 |
19
|
rspceaimv |
|- ( ( 1 e. RR+ /\ A. w e. ~H ( ( normh ` ( w -h x ) ) < 1 -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) ) -> E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) ) |
21 |
3 18 20
|
sylancr |
|- ( ( x e. ~H /\ y e. RR+ ) -> E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) ) |
22 |
21
|
rgen2 |
|- A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) |
23 |
|
elcnfn |
|- ( ( ~H X. { 0 } ) e. ContFn <-> ( ( ~H X. { 0 } ) : ~H --> CC /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) ) ) |
24 |
2 22 23
|
mpbir2an |
|- ( ~H X. { 0 } ) e. ContFn |