| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0cn |  |-  0 e. CC | 
						
							| 2 | 1 | fconst6 |  |-  ( ~H X. { 0 } ) : ~H --> CC | 
						
							| 3 |  | 1rp |  |-  1 e. RR+ | 
						
							| 4 |  | c0ex |  |-  0 e. _V | 
						
							| 5 | 4 | fvconst2 |  |-  ( w e. ~H -> ( ( ~H X. { 0 } ) ` w ) = 0 ) | 
						
							| 6 | 4 | fvconst2 |  |-  ( x e. ~H -> ( ( ~H X. { 0 } ) ` x ) = 0 ) | 
						
							| 7 | 5 6 | oveqan12rd |  |-  ( ( x e. ~H /\ w e. ~H ) -> ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) = ( 0 - 0 ) ) | 
						
							| 8 | 7 | adantlr |  |-  ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) = ( 0 - 0 ) ) | 
						
							| 9 |  | 0m0e0 |  |-  ( 0 - 0 ) = 0 | 
						
							| 10 | 8 9 | eqtrdi |  |-  ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) = 0 ) | 
						
							| 11 | 10 | fveq2d |  |-  ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) = ( abs ` 0 ) ) | 
						
							| 12 |  | abs0 |  |-  ( abs ` 0 ) = 0 | 
						
							| 13 | 11 12 | eqtrdi |  |-  ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) = 0 ) | 
						
							| 14 |  | rpgt0 |  |-  ( y e. RR+ -> 0 < y ) | 
						
							| 15 | 14 | ad2antlr |  |-  ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> 0 < y ) | 
						
							| 16 | 13 15 | eqbrtrd |  |-  ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) | 
						
							| 17 | 16 | a1d |  |-  ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( ( normh ` ( w -h x ) ) < 1 -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) ) | 
						
							| 18 | 17 | ralrimiva |  |-  ( ( x e. ~H /\ y e. RR+ ) -> A. w e. ~H ( ( normh ` ( w -h x ) ) < 1 -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) ) | 
						
							| 19 |  | breq2 |  |-  ( z = 1 -> ( ( normh ` ( w -h x ) ) < z <-> ( normh ` ( w -h x ) ) < 1 ) ) | 
						
							| 20 | 19 | rspceaimv |  |-  ( ( 1 e. RR+ /\ A. w e. ~H ( ( normh ` ( w -h x ) ) < 1 -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) ) -> E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) ) | 
						
							| 21 | 3 18 20 | sylancr |  |-  ( ( x e. ~H /\ y e. RR+ ) -> E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) ) | 
						
							| 22 | 21 | rgen2 |  |-  A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) | 
						
							| 23 |  | elcnfn |  |-  ( ( ~H X. { 0 } ) e. ContFn <-> ( ( ~H X. { 0 } ) : ~H --> CC /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) ) ) | 
						
							| 24 | 2 22 23 | mpbir2an |  |-  ( ~H X. { 0 } ) e. ContFn |