Step |
Hyp |
Ref |
Expression |
1 |
|
ho0f |
|- 0hop : ~H --> ~H |
2 |
|
1rp |
|- 1 e. RR+ |
3 |
|
ho0val |
|- ( w e. ~H -> ( 0hop ` w ) = 0h ) |
4 |
|
ho0val |
|- ( x e. ~H -> ( 0hop ` x ) = 0h ) |
5 |
3 4
|
oveqan12rd |
|- ( ( x e. ~H /\ w e. ~H ) -> ( ( 0hop ` w ) -h ( 0hop ` x ) ) = ( 0h -h 0h ) ) |
6 |
5
|
adantlr |
|- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( ( 0hop ` w ) -h ( 0hop ` x ) ) = ( 0h -h 0h ) ) |
7 |
|
ax-hv0cl |
|- 0h e. ~H |
8 |
|
hvsubid |
|- ( 0h e. ~H -> ( 0h -h 0h ) = 0h ) |
9 |
7 8
|
ax-mp |
|- ( 0h -h 0h ) = 0h |
10 |
6 9
|
eqtrdi |
|- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( ( 0hop ` w ) -h ( 0hop ` x ) ) = 0h ) |
11 |
10
|
fveq2d |
|- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) = ( normh ` 0h ) ) |
12 |
|
norm0 |
|- ( normh ` 0h ) = 0 |
13 |
11 12
|
eqtrdi |
|- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) = 0 ) |
14 |
|
rpgt0 |
|- ( y e. RR+ -> 0 < y ) |
15 |
14
|
ad2antlr |
|- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> 0 < y ) |
16 |
13 15
|
eqbrtrd |
|- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) |
17 |
16
|
a1d |
|- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( ( normh ` ( w -h x ) ) < 1 -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) ) |
18 |
17
|
ralrimiva |
|- ( ( x e. ~H /\ y e. RR+ ) -> A. w e. ~H ( ( normh ` ( w -h x ) ) < 1 -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) ) |
19 |
|
breq2 |
|- ( z = 1 -> ( ( normh ` ( w -h x ) ) < z <-> ( normh ` ( w -h x ) ) < 1 ) ) |
20 |
19
|
rspceaimv |
|- ( ( 1 e. RR+ /\ A. w e. ~H ( ( normh ` ( w -h x ) ) < 1 -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) ) -> E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) ) |
21 |
2 18 20
|
sylancr |
|- ( ( x e. ~H /\ y e. RR+ ) -> E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) ) |
22 |
21
|
rgen2 |
|- A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) |
23 |
|
elcnop |
|- ( 0hop e. ContOp <-> ( 0hop : ~H --> ~H /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) ) ) |
24 |
1 22 23
|
mpbir2an |
|- 0hop e. ContOp |