| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ho0f |  |-  0hop : ~H --> ~H | 
						
							| 2 |  | 1rp |  |-  1 e. RR+ | 
						
							| 3 |  | ho0val |  |-  ( w e. ~H -> ( 0hop ` w ) = 0h ) | 
						
							| 4 |  | ho0val |  |-  ( x e. ~H -> ( 0hop ` x ) = 0h ) | 
						
							| 5 | 3 4 | oveqan12rd |  |-  ( ( x e. ~H /\ w e. ~H ) -> ( ( 0hop ` w ) -h ( 0hop ` x ) ) = ( 0h -h 0h ) ) | 
						
							| 6 | 5 | adantlr |  |-  ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( ( 0hop ` w ) -h ( 0hop ` x ) ) = ( 0h -h 0h ) ) | 
						
							| 7 |  | ax-hv0cl |  |-  0h e. ~H | 
						
							| 8 |  | hvsubid |  |-  ( 0h e. ~H -> ( 0h -h 0h ) = 0h ) | 
						
							| 9 | 7 8 | ax-mp |  |-  ( 0h -h 0h ) = 0h | 
						
							| 10 | 6 9 | eqtrdi |  |-  ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( ( 0hop ` w ) -h ( 0hop ` x ) ) = 0h ) | 
						
							| 11 | 10 | fveq2d |  |-  ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) = ( normh ` 0h ) ) | 
						
							| 12 |  | norm0 |  |-  ( normh ` 0h ) = 0 | 
						
							| 13 | 11 12 | eqtrdi |  |-  ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) = 0 ) | 
						
							| 14 |  | rpgt0 |  |-  ( y e. RR+ -> 0 < y ) | 
						
							| 15 | 14 | ad2antlr |  |-  ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> 0 < y ) | 
						
							| 16 | 13 15 | eqbrtrd |  |-  ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) | 
						
							| 17 | 16 | a1d |  |-  ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( ( normh ` ( w -h x ) ) < 1 -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) ) | 
						
							| 18 | 17 | ralrimiva |  |-  ( ( x e. ~H /\ y e. RR+ ) -> A. w e. ~H ( ( normh ` ( w -h x ) ) < 1 -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) ) | 
						
							| 19 |  | breq2 |  |-  ( z = 1 -> ( ( normh ` ( w -h x ) ) < z <-> ( normh ` ( w -h x ) ) < 1 ) ) | 
						
							| 20 | 19 | rspceaimv |  |-  ( ( 1 e. RR+ /\ A. w e. ~H ( ( normh ` ( w -h x ) ) < 1 -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) ) -> E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) ) | 
						
							| 21 | 2 18 20 | sylancr |  |-  ( ( x e. ~H /\ y e. RR+ ) -> E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) ) | 
						
							| 22 | 21 | rgen2 |  |-  A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) | 
						
							| 23 |  | elcnop |  |-  ( 0hop e. ContOp <-> ( 0hop : ~H --> ~H /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) ) ) | 
						
							| 24 | 1 22 23 | mpbir2an |  |-  0hop e. ContOp |