Description: A graph without vertices is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017) (Revised by AV, 15-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0conngr | |- (/) e. ConnGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 | |- A. k e. (/) A. n e. (/) E. f E. p f ( k ( PathsOn ` (/) ) n ) p |
|
| 2 | 0ex | |- (/) e. _V |
|
| 3 | vtxval0 | |- ( Vtx ` (/) ) = (/) |
|
| 4 | 3 | eqcomi | |- (/) = ( Vtx ` (/) ) |
| 5 | 4 | isconngr | |- ( (/) e. _V -> ( (/) e. ConnGraph <-> A. k e. (/) A. n e. (/) E. f E. p f ( k ( PathsOn ` (/) ) n ) p ) ) |
| 6 | 2 5 | ax-mp | |- ( (/) e. ConnGraph <-> A. k e. (/) A. n e. (/) E. f E. p f ( k ( PathsOn ` (/) ) n ) p ) |
| 7 | 1 6 | mpbir | |- (/) e. ConnGraph |