Step |
Hyp |
Ref |
Expression |
1 |
|
0cn |
|- 0 e. CC |
2 |
|
cxpval |
|- ( ( 0 e. CC /\ A e. CC ) -> ( 0 ^c A ) = if ( 0 = 0 , if ( A = 0 , 1 , 0 ) , ( exp ` ( A x. ( log ` 0 ) ) ) ) ) |
3 |
1 2
|
mpan |
|- ( A e. CC -> ( 0 ^c A ) = if ( 0 = 0 , if ( A = 0 , 1 , 0 ) , ( exp ` ( A x. ( log ` 0 ) ) ) ) ) |
4 |
|
eqid |
|- 0 = 0 |
5 |
4
|
iftruei |
|- if ( 0 = 0 , if ( A = 0 , 1 , 0 ) , ( exp ` ( A x. ( log ` 0 ) ) ) ) = if ( A = 0 , 1 , 0 ) |
6 |
3 5
|
eqtrdi |
|- ( A e. CC -> ( 0 ^c A ) = if ( A = 0 , 1 , 0 ) ) |
7 |
|
ifnefalse |
|- ( A =/= 0 -> if ( A = 0 , 1 , 0 ) = 0 ) |
8 |
6 7
|
sylan9eq |
|- ( ( A e. CC /\ A =/= 0 ) -> ( 0 ^c A ) = 0 ) |