Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | 0disj | |- Disj_ x e. A (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss | |- (/) C_ { x } |
|
2 | 1 | rgenw | |- A. x e. A (/) C_ { x } |
3 | sndisj | |- Disj_ x e. A { x } |
|
4 | disjss2 | |- ( A. x e. A (/) C_ { x } -> ( Disj_ x e. A { x } -> Disj_ x e. A (/) ) ) |
|
5 | 2 3 4 | mp2 | |- Disj_ x e. A (/) |