Metamath Proof Explorer


Theorem 0domg

Description: Any set dominates the empty set. (Contributed by NM, 26-Oct-2003) (Revised by Mario Carneiro, 26-Apr-2015) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion 0domg
|- ( A e. V -> (/) ~<_ A )

Proof

Step Hyp Ref Expression
1 0ex
 |-  (/) e. _V
2 f1eq1
 |-  ( f = (/) -> ( f : (/) -1-1-> A <-> (/) : (/) -1-1-> A ) )
3 f10
 |-  (/) : (/) -1-1-> A
4 1 2 3 ceqsexv2d
 |-  E. f f : (/) -1-1-> A
5 brdom2g
 |-  ( ( (/) e. _V /\ A e. V ) -> ( (/) ~<_ A <-> E. f f : (/) -1-1-> A ) )
6 1 5 mpan
 |-  ( A e. V -> ( (/) ~<_ A <-> E. f f : (/) -1-1-> A ) )
7 4 6 mpbiri
 |-  ( A e. V -> (/) ~<_ A )