Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
|- 0 e. ZZ |
2 |
|
divides |
|- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( 0 || N <-> E. n e. ZZ ( n x. 0 ) = N ) ) |
3 |
1 2
|
mpan |
|- ( N e. ZZ -> ( 0 || N <-> E. n e. ZZ ( n x. 0 ) = N ) ) |
4 |
|
zcn |
|- ( n e. ZZ -> n e. CC ) |
5 |
4
|
mul01d |
|- ( n e. ZZ -> ( n x. 0 ) = 0 ) |
6 |
|
eqtr2 |
|- ( ( ( n x. 0 ) = N /\ ( n x. 0 ) = 0 ) -> N = 0 ) |
7 |
5 6
|
sylan2 |
|- ( ( ( n x. 0 ) = N /\ n e. ZZ ) -> N = 0 ) |
8 |
7
|
ancoms |
|- ( ( n e. ZZ /\ ( n x. 0 ) = N ) -> N = 0 ) |
9 |
8
|
rexlimiva |
|- ( E. n e. ZZ ( n x. 0 ) = N -> N = 0 ) |
10 |
3 9
|
syl6bi |
|- ( N e. ZZ -> ( 0 || N -> N = 0 ) ) |
11 |
|
dvds0 |
|- ( 0 e. ZZ -> 0 || 0 ) |
12 |
1 11
|
ax-mp |
|- 0 || 0 |
13 |
|
breq2 |
|- ( N = 0 -> ( 0 || N <-> 0 || 0 ) ) |
14 |
12 13
|
mpbiri |
|- ( N = 0 -> 0 || N ) |
15 |
10 14
|
impbid1 |
|- ( N e. ZZ -> ( 0 || N <-> N = 0 ) ) |