Description: 0 is a member of ( 0 , +oo ) . (Contributed by David A. Wheeler, 8-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0e0iccpnf | |- 0 e. ( 0 [,] +oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | |- 0 e. RR* |
|
| 2 | 0le0 | |- 0 <_ 0 |
|
| 3 | elxrge0 | |- ( 0 e. ( 0 [,] +oo ) <-> ( 0 e. RR* /\ 0 <_ 0 ) ) |
|
| 4 | 1 2 3 | mpbir2an | |- 0 e. ( 0 [,] +oo ) |