| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( ( G e. W /\ ( iEdg ` G ) = (/) ) /\ v e. ( Vtx ` G ) ) -> v e. ( Vtx ` G ) ) |
| 2 |
|
simplr |
|- ( ( ( G e. W /\ ( iEdg ` G ) = (/) ) /\ v e. ( Vtx ` G ) ) -> ( iEdg ` G ) = (/) ) |
| 3 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 4 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 5 |
3 4
|
vtxdg0e |
|- ( ( v e. ( Vtx ` G ) /\ ( iEdg ` G ) = (/) ) -> ( ( VtxDeg ` G ) ` v ) = 0 ) |
| 6 |
1 2 5
|
syl2anc |
|- ( ( ( G e. W /\ ( iEdg ` G ) = (/) ) /\ v e. ( Vtx ` G ) ) -> ( ( VtxDeg ` G ) ` v ) = 0 ) |
| 7 |
6
|
ralrimiva |
|- ( ( G e. W /\ ( iEdg ` G ) = (/) ) -> A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = 0 ) |
| 8 |
|
0xnn0 |
|- 0 e. NN0* |
| 9 |
7 8
|
jctil |
|- ( ( G e. W /\ ( iEdg ` G ) = (/) ) -> ( 0 e. NN0* /\ A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = 0 ) ) |
| 10 |
8
|
a1i |
|- ( ( iEdg ` G ) = (/) -> 0 e. NN0* ) |
| 11 |
|
eqid |
|- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
| 12 |
3 11
|
isrgr |
|- ( ( G e. W /\ 0 e. NN0* ) -> ( G RegGraph 0 <-> ( 0 e. NN0* /\ A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = 0 ) ) ) |
| 13 |
10 12
|
sylan2 |
|- ( ( G e. W /\ ( iEdg ` G ) = (/) ) -> ( G RegGraph 0 <-> ( 0 e. NN0* /\ A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = 0 ) ) ) |
| 14 |
9 13
|
mpbird |
|- ( ( G e. W /\ ( iEdg ` G ) = (/) ) -> G RegGraph 0 ) |