Description: Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | 0el | |- ( (/) e. A <-> E. x e. A A. y -. y e. x ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset | |- ( (/) e. A <-> E. x e. A x = (/) ) |
|
2 | eq0 | |- ( x = (/) <-> A. y -. y e. x ) |
|
3 | 2 | rexbii | |- ( E. x e. A x = (/) <-> E. x e. A A. y -. y e. x ) |
4 | 1 3 | bitri | |- ( (/) e. A <-> E. x e. A A. y -. y e. x ) |