Metamath Proof Explorer


Theorem 0elcpmat

Description: The zero of the ring of all polynomial matrices over the ring R is a constant polynomial matrix. (Contributed by AV, 27-Nov-2019)

Ref Expression
Hypotheses 0elcpmat.s
|- S = ( N ConstPolyMat R )
0elcpmat.p
|- P = ( Poly1 ` R )
0elcpmat.c
|- C = ( N Mat P )
Assertion 0elcpmat
|- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` C ) e. S )

Proof

Step Hyp Ref Expression
1 0elcpmat.s
 |-  S = ( N ConstPolyMat R )
2 0elcpmat.p
 |-  P = ( Poly1 ` R )
3 0elcpmat.c
 |-  C = ( N Mat P )
4 1 2 3 cpmatsubgpmat
 |-  ( ( N e. Fin /\ R e. Ring ) -> S e. ( SubGrp ` C ) )
5 eqid
 |-  ( 0g ` C ) = ( 0g ` C )
6 5 subg0cl
 |-  ( S e. ( SubGrp ` C ) -> ( 0g ` C ) e. S )
7 4 6 syl
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` C ) e. S )