Metamath Proof Explorer


Theorem 0elfz

Description: 0 is an element of a finite set of sequential nonnegative integers with a nonnegative integer as upper bound. (Contributed by AV, 6-Apr-2018)

Ref Expression
Assertion 0elfz
|- ( N e. NN0 -> 0 e. ( 0 ... N ) )

Proof

Step Hyp Ref Expression
1 0nn0
 |-  0 e. NN0
2 1 a1i
 |-  ( N e. NN0 -> 0 e. NN0 )
3 id
 |-  ( N e. NN0 -> N e. NN0 )
4 nn0ge0
 |-  ( N e. NN0 -> 0 <_ N )
5 elfz2nn0
 |-  ( 0 e. ( 0 ... N ) <-> ( 0 e. NN0 /\ N e. NN0 /\ 0 <_ N ) )
6 2 3 4 5 syl3anbrc
 |-  ( N e. NN0 -> 0 e. ( 0 ... N ) )