Description: 0 is an element of a finite set of sequential nonnegative integers with a nonnegative integer as upper bound. (Contributed by AV, 6-Apr-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | 0elfz | |- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 | |- 0 e. NN0 |
|
2 | 1 | a1i | |- ( N e. NN0 -> 0 e. NN0 ) |
3 | id | |- ( N e. NN0 -> N e. NN0 ) |
|
4 | nn0ge0 | |- ( N e. NN0 -> 0 <_ N ) |
|
5 | elfz2nn0 | |- ( 0 e. ( 0 ... N ) <-> ( 0 e. NN0 /\ N e. NN0 /\ 0 <_ N ) ) |
|
6 | 2 3 4 5 | syl3anbrc | |- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |